首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  国内免费   1篇
  完全免费   5篇
  自动化技术   13篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
一种新的心脏核磁共振图像分割方法   总被引:9,自引:1,他引:8  
心脏核磁共振图像分割一直是医学影像分析领域的研究热点和难点,文中提出了一种基于梯度矢量流Snake模型的左心室分割方法.作为对梯度矢量流(GVF)的改进,提出了退化最小曲面梯度矢量流(dmsGVF).该模型对弱边界泄漏有更好的鲁棒性;挖掘了左心室的形状特点,采用相应的形状约束,克服了由于图像灰度不均而导致的局部极小,也大大减弱了分割结果对初始轮廓的依赖;对于左室壁外膜的分割,挖掘了左室壁内、外膜的位置关系,通过重新组合梯度分量来构造新的外力场.这种外力场能够克服原始梯度矢量流的不足,使得室壁外膜边缘很弱时也能得到保持,以左室壁内膜分割结果作为初始化能够自动地分割出左室壁外膜.实验结果表明,该方法能高效准确地同时分割左室壁内、外膜.  相似文献
2.
基于多元信息的高斯混合模型左心室MR图像分割   总被引:1,自引:1,他引:0  
水平集模型在核磁共振图像(MRI)分割中具有十分重要的地位。但由于MR图像往往具有弱边界和强噪音,传统的水平集模型用于图像分割时一般依据图像梯度信息,因而很难得到真实解。高斯混合模型使用了图像全局信息,能较好地处理弱边界问题。但传统的高斯混合模型仅使用了灰度值分布信息,未对像素的位置进行考虑,这使得其在处理噪音图像时效果并不是很理想。该文利用图像多种信息构造新的信息场,使得由信息场构造的高斯混合模型更能处理噪音等影响,同时防止从弱边界泄漏。在取得心脏内壁后构造能量方程,运用形状约束和图像信息以得到心脏外壁。对左心室MR图像分割实验表明该模型具有较好的分割效果。  相似文献
3.
一种基于主动轮廓模型的心脏核磁共振图像分割方法   总被引:1,自引:0,他引:1  
提出一种基于主动轮廓模型的左室壁内、外膜分割方法.首先构造了主动轮廓模型的广义法向有偏梯度矢量流外力模型GNBGVF,作为对梯度矢量流(GVF)的改进,该外力场同时保持了切线方向和法线方向有偏的扩散,具有捕捉范围大、抗噪能力强,且在弱边界泄漏等问题上性能突出.就左室壁内膜的分割而言,考虑到左室壁的近似为圆形的特点,引入了圆形约束的能量项,有利于克服由于图像灰度不均、乳突肌等而导致的局部极小.对于左室壁外膜的分割,采用内膜的分割结果初始化,即通过重新组合梯度分量来构造外力场.该外力场能够克服原始梯度矢量流的不足,使得左室壁外膜边缘很弱时也能得到保持,可以自动、准确地分割外膜.实验结果表明,该方法能高效准确地分割左室壁内、外膜.  相似文献
4.
一种心脏核磁共振图像左室壁内、外膜分割方法   总被引:1,自引:0,他引:1       下载免费PDF全文
王元全  贾云得 《软件学报》2009,20(5):1176-1184
为了充分利用心脏核磁共振图像(magnetic resonance image,简称MRI)中关于左心室的解剖和功能信息,必须先分割左室壁内、外膜.提出一种基于Snake模型的左室壁内、外膜分割方法.首先提出了Snake模型的卷积虚拟静电场外力模型CONVEF(convolutional virtual electric field),该外力场捕捉范围大、抗噪能力强、在C形凹陷区域等问题上性能突出,而且基于卷积运算,采用快速Fourier变换可以实时计算.就左室壁内膜的分割而言,考虑到左室壁的形状近似为圆形,引入基于圆形约束的能量项.对于左室壁外膜的分割,充分挖掘了左室壁内、外膜形状上的相似性和位置上的相关性,构造了形状相似性内能和一个新的边缘图,该边缘图用来计算新的外力场.基于所有这些策略并采用内膜的分割结果初始化,可以自动、准确地分割外膜.通过对一套活体心脏MR(magnetic resonance)图像进行分割并和手工分割结果和GGVF(generalized gradient vector flow) Snake模型的分割结果进行比较,结果表明该方法是有效的.  相似文献
5.
一种基于广义梯度矢量流Snake模型的心脏MR图像分割方法   总被引:1,自引:0,他引:1  
提出了一种基于广义梯度矢量流Snake模型的心脏核磁共振图像左心室内、外膜分割方法。首先构造了一种基于目标边缘的方向广义梯度矢量流(edge-based directional generalized gradient vector flow, EDGGVF) Snake模型,该模型在传统GGVF的基础上,结合目标边缘图梯度方向信息,将左心室内、外膜区分为正边缘和负边缘,从而实现左心室内外膜的全自动分割。其次,根据左心室近似为圆形的形状特点,引入了圆形能量约束,有利于克服由于图像灰度不均、乳突肌等引起的局部极小。实验结果表明,该方法可以高效准确地自动分割出左心室内、外膜。  相似文献
6.
将基于轮廓曲率的帧间几何形状约束势能,与目标区域信息和边缘梯度信息相结合,定义新的主动轮廓跟踪模型.该模型可以克服弱边缘及强背景等噪声对轮廓的吸引和干扰,同时保持目标的基本形状,实现和改善对具有尖角、深凹等不规则形状目标的边缘跟踪.采用基于块匹配的边界仿射变换方法对主动轮廓的初始位置进行估计,使其更接近目标的真实边缘.实验结果表明,该算法具有较好的边缘跟踪和抗复杂背景的能力.  相似文献
7.
提出结合水平集方法和形状约束Snake模型的左心室MRI图像分割算法.由于左心室存在弱边缘、与周围的组织之间存在低对比度区域,Snake模型分割左心室MRI图像时,将会出现变形曲线泄漏现象.通过对训练图像的配准、变化模式的分析,定义左心室的边界形状变化允许空间.根据心脏MRI图像的特点,使用水平集方法在平均形状周围构造形状约束能量场.在Snake模型中增加形状约束能量项后,能够有效处理变形曲线的泄漏问题.通过将演化曲线投影到形状允许空间,对其施加形状约束.心脏MRI图像的分割实验证明了模型的有效性.  相似文献
8.
薛峰  丁晓青 《计算机应用》2007,27(3):686-689
传统的三维人脸形变模型是通过对大量的三维人脸数据进行学习,构建描述人脸三维形状和纹理的参数模型,通过模型优化完成对二维人脸图像的三维重构。但是,实际中大量的训练样本是很难获得的,这导致形变模型描述能力的不完善,制约了它的应用。如将整个人脸看成由若干个组件组合而成,则在样本数不变的情况下降低了描述空间的维数,提高了模型的描述能力。但是在重构人脸图像时必须解决组件间三维空间的重叠合并,并且随着组件数目的增加,模型参数也随之增加,所以对优化算法也提出了更高的要求。为了解决形变模型的这些困难,提出了一种全局模型和组件模型的折中算法,即在形状上保持全局约束而纹理上进行组件匹配,从而在算法性能和算法复杂度之间获得了一个有效的平衡。  相似文献
9.
传统的Graph Cut算法没有对目标的形状予以限制,很难得到语义化的分割结果,即无法保证分割出来的是"行人"。针对该问题提出一种结合形状和底层特征的Graph Cut算法。对于行人分割,用大量真实行人轮廓来表达"行人"的先验形状,对Graph Cut分割算法予以约束,同时构建一个行人模板的层次树以减少匹配时间;并且提出一种区分性的外观模型来替换原来的外观模型。实验结果证明,该算法的分割结果明显优于传统Graph Cut算法的分割结果,所得到的轮廓与真实的行人轮廓比较吻合。  相似文献
10.
虹膜分割是虹膜识别系统中最重要的环节,其分割的好坏将影响虹膜识别的准确率,而虹膜识别也是最可靠的人体生物终身身份标志之一。因此,提出了基于水平集算法的虹膜分割算法。此算法是利用水平集隐式特点与圆形形状方程显式的特点相融合确保了演化曲线在演化过程中仍保持圆形,利用其思想分割内边缘。引入自适应面积项到形状约束的CV模型中用来约束外边缘。实验结果表明,尽管眼睛睁开有限、眼镜和睫毛及眼睑等遮挡以及成像设备形成图像的角度等问题,此模型仍能取得很好的分割效果。选用区域相互重叠度——DICE作为分割算法的评价指标,由实验数据可知,提出的算法对虹膜分割是有效的。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号