首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  国内免费   3篇
  完全免费   1篇
  自动化技术   7篇
  2018年   4篇
  2017年   1篇
  2015年   1篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
循环神经网络语言模型能解决传统N-gram模型中存在的数据稀疏和维数灾难问题,但仍缺乏对长距离信息的描述能力。为此文中提出一种基于词向量特征的循环神经网络语言模型改进方法。该方法在输入层中增加特征层,改进模型结构。在模型训练时,通过特征层加入上下文词向量,增强网络对长距离信息约束的学习能力。实验表明,文中方法能有效提高语言模型的性能。  相似文献
2.
笱程成  秦宇君  田甜  伍大勇  刘悦  程学旗 《软件学报》2017,28(11):3030-3042
社交网络中,消息的爆发预测属于社交网络流行动态分析的范畴,是社会计算领域的研究热点之一.通过利用基于深度循环神经网络对社交消息的传播过程进行建模,提出了SMOP(social messages outbreak prediction model based on recurrent neural network)模型.与传统的基于机器学习的模型相比,SMOP直接对消息转发的到达过程进行建模,避免了传统方法中繁琐的特征工程;与基于点随机过程的模型相比,SMOP可以自动学习消息传播过程的速率函数,不需要手动定义消息传播速率的特征函数,具有较强的数据场景适应性.另外,SMOP采用了时间向量和用户向量的输入表示方法,将时间的周期性和用户的兴趣偏好建模到传播过程之中,提升了SMOP的预测效果.在Twitter和新浪微博数据集上的实验结果均表明,SMOP具有优良的数据适应能力,可以在消息传播的早期(0.5h),以较高的F1值预测某条社交消息是否爆发,验证了模型的有效性.  相似文献
3.
针对长短时记忆网络(LSTM)型循环神经网络(RNN)收敛速度慢,提出了扩展激活函数非饱和区的RNN算法优化.针对LSTM型RNN的训练过程收敛速度慢的原因以及激活函数的性质,提出了加快RNN训练过程收敛的解决方法.通过字符级语言模型对优化方法进行了验证,结果表明:非饱和区扩展的RNN算法优化有效地加快了RNN训练过程的收敛.  相似文献
4.
针对循环神经网络(RNN)结构在深层网络中收敛较慢和训练效果较差的问题,分析了长短期记忆(LSTM)和Highway网络的门结构特征,提出了一种将层间信息进行跨层连接的门结构单元(CIGU).结合循环神经网络时间扩展的特点,通过设计层间门结构,使CIGU模型在空间上反向梯度下降时能够像LSTM在时间上传播一样具有长短期记忆能力,从而加强循环神经网络在空间上的深度学习能力.将设计的结构应用到LSTM中,并通过PTB语言数据集对不同的门结构进行训练和测试.结果表明:随着模型层数的加深,CIGU的训练收敛速度和测试结果比传统LSTM和基于Highway网络结构的LSTM显著提高.  相似文献
5.
数据库负载管理、性能调优中,开销预测模型是提高其效率的关键技术。首先,由于数据库系统的复杂性和计算机资源的竞争,很难精确地估计不同操作的开销。其次,由于查询计划结构的复杂性,现有研究更多使用笼统的查询信息,而很少利用查询计划中操作层面的信息,并依据这些信息来获得开销模型。另外,现有的研究大多没有真正预测查询的执行时间,而是预测了类似查询优化器中开销模型生成的开销。为了减少负载管理的复杂性,本文提出了基于循环神经网络的精细模型来预测查询开销,以查询计划中的操作行为和其实际运行时间作为特征提取的来源。特别地,考虑到查询计划结构的复杂性,本文采用一种特殊的循环神经网络,长短期记忆(Long-Short Term Memory,LSTM)。给一个特定的查询计划,在该计划实际执行之前,模型就能产生其预测的执行时间。这会比现有数据库的查询优化器产生的开销预估结果(任意单位)更具有参考性;也优于需要在执行开始之后才能预测的查询进度指示器。本文提出的这种创新方法来预测查询执行时间,可以用于解决数据库负载管理中的关键问题。通过实验验证,模型的正确率高于71%,一定程度上证明了方法的可行性。  相似文献
6.
随着开源软件项目规模的不断增大,人工为缺陷报告分派合适的开发人员(缺陷分派)变得越来越困难.而不合适的缺陷分派往往会严重影响缺陷修复的效率,为此迫切需要一种缺陷分派辅助技术帮助项目管理者更好地完成缺陷分派任务.当前,大部分研究工作都基于缺陷报告文本以及相关元数据信息分析来刻画开发者的特征,忽略了对开发者活跃度的考虑,使得对具有相似特征的开发者进行缺陷报告分派预测时表现较差.本文提出了一个基于循环神经网络的深度学习模型DeepTriage,一方面利用双向循环网络加池化方法提取缺陷报告的文本特征,一方面利用单向循环网络提取特定时刻的开发者活跃度特征,并融合两者,利用已修复的缺陷报告进行监督学习.在Eclipse等四个不同的开源项目数据集上的实验结果表明,DeepTriage较同类工作在缺陷分派预测准确率上有显著提升.  相似文献
7.
In this paper,the constrained optimization technique for a substantial problem is explored,that is accelerating training the globally recurrent neural network.Unlike most of the previous methods in feedforware neural networks,the authors adopt the constrained optimization technique to improve the gradientbased algorithm of the globally recurrent neural network for the adaptive learning rate during tracining.Using the recurrent network with the improved algorithm,some experiments in two real-world problems,namely,filtering additive noises in acoustic data and classification of temporat signals for speaker identification,have been performed.The experimental results show that the recurrent neural network with the improved learning algorithm yields significantly faster training and achieves the satisfactory performance.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号