首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  国内免费   5篇
  完全免费   50篇
  自动化技术   110篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   10篇
  2016年   8篇
  2015年   6篇
  2014年   20篇
  2013年   16篇
  2012年   17篇
  2011年   10篇
  2010年   7篇
  2009年   7篇
  2007年   3篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
1.
基于汉语情感词表的句子情感倾向分类研究   总被引:6,自引:2,他引:4       下载免费PDF全文
提出了一种基于汉语情感词词表的加权线性组合的句子情感分类方法。该方法通过已有的五种资源构建了中文情感词词表,并采用加权线性组合的句子情感分类方法对句子进行情感类别判断。实验结果表明,直接利用词汇语言粒度的句子情感分类综合F值为78.62%,若加入了否定短语语言粒度后,句子情感分类的综合F值提高了4.14%。  相似文献
2.
基于语言建模的文本情感分类研究   总被引:3,自引:0,他引:3  
提出了一种基于语言建模的文本情感分类的方法.将文本的情感倾向标记为"赞扬"或"批评",可以为文本提供主题之外的语义信息.为此提出了从训练数据中分别估计出代表"赞扬"和"批评"两种情感倾向的语言模型,然后通过比较测试文本自身的语言模型和这两种训练好的情感模型之间的Kullback-Leibler距离,分类测试文本的思路.各个模型的参数分别选用词形特征的unigram和bigram,而相应的参数估计也分别尝试了最大似然和平滑两种策略.当在电影评论语料上和代表不同分类模型的支持向量机及朴素贝叶斯分类器进行比较时,语言建模的方法表现出了较好的分类性能和鲁棒性.  相似文献
3.
基于情感词识别的BBS情感分类研究   总被引:3,自引:0,他引:3  
针对目前BBS网络信息杂乱的现象,提出了一种BBS情感分类方法,能够方便用户准确定位所需信息,辨识评论的极性(肯定还是否定).根据词语具有语义倾向的概率大小,利用最大熵的特征模型识别文本中具有语义倾向的词语,选择具有一定倾向值的词作为文档的特征表示.通过这些类型特征构造支持向量机分类模型,对BBS文本所表达的情感等主观内容进行分类,判断其是正面还是负面.实验表明,在BBS情感分类中,基于该特征表示的分类精度较好.  相似文献
4.
基于监督学习的中文情感分类技术比较研究   总被引:2,自引:0,他引:2  
情感分类是一项具有较大实用价值的分类技术,它可以在一定程度上解决网络评论信息杂乱的现象,方便用户准确定位所需信息。目前针对中文情感分类的研究相对较少,其中各种有监督学习方法的分类效果以及文本特征表示方法和特征选择机制等因素对分类性能的影响更是亟待研究的问题。本文以n-gram以及名词、动词、形容词、副词作为不同的文本表示特征,以互信息、信息增益、CHI统计量和文档频率作为不同的特征选择方法,以中心向量法、KNN、Winnow、Na ve Bayes和SVM作为不同的文本分类方法,在不同的特征数量和不同规模的训练集情况下,分别进行了中文情感分类实验,并对实验结果进行了比较,对比结果表明:采用Bi Grams特征表示方法、信息增益特征选择方法和SVM分类方法,在足够大训练集和选择适当数量特征的情况下,情感分类能取得较好的效果。  相似文献
5.
基于机器学习的中文微博情感分类实证研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用三种机器学习算法、三种特征选取算法以及三种特征项权重计算方法对微博进行了情感分类的实证研究。实验结果表明,针对不同的特征权重计算方法,支持向量机(SVM)和贝叶斯分类算法(Nave Bayes)各有优势,信息增益(IG)特征选取方法相比于其他的方法效果明显要好。综合考虑三种因素,采用SVM和IG,以及TF-IDF(Term Frequency-Inverse Document Frequency)作为特征项权重,三者结合对微博的情感分类效果最好。针对电影领域,比较了微博评论和普通评论之间分类模型的通用性,实验结果表明情感分类性能依赖于评论的风格。  相似文献
6.
基于多特征融合的汉语情感分类研究*   总被引:2,自引:1,他引:1       下载免费PDF全文
中文情感分类一般分成基于情感词典和基于特征分类两种方法进行研究,但没有考虑过将两种方法得到的特征进行融合来提高分类效果。基于特征分类的方法忽视了特征词在情感词典的褒贬性以及词倾向性的强弱。用基于特征分类方法得到的文本特征建立朴素贝叶斯模型,根据特征词在情感词典中的褒贬性及其通过点对互信息方法得到的词性强弱调整情感词的正负后验概率权重,实现两种特征的融合,提高分类效果并降低了特征维数。  相似文献
7.
基于Stacking组合分类方法的中文情感分类研究   总被引:2,自引:1,他引:1  
情感文本分类(简称情感分类)是一种面向主观信息分类的文本分类任务.目前,由于其广泛的应用前景,该任务在自然语言处理研究领域中得到了普遍关注,相继出现多种用于情感文本分类的有监督的分类方法.该文具体研究四种不同的分类方法在中文情感分类上的应用,并且采用一种基于Stacking的组合分类方法,用以组合不同的分类方法.实验结果表明,该组合方法在所有领域都能够获得比最好基分类方法更好的分类效果.从而克服了分类方法领域依赖的困境(不同领域需要选择不同基分类方法才能获得更好的分类结果).  相似文献
8.
杨鼎  阳爱民 《计算机应用研究》2010,27(10):3737-3739
基于朴素贝叶斯理论提出了一种新的中文文本情感分类方法。这种方法利用情感词典对文本进行处理和表示,基于朴素贝叶斯理论构建文本情感分类器,并以互联网上宾馆中文评论作为分类研究的对象。实验表明,使用提出的方法构成的分类器具有分类速度快、分类准确度高、鲁棒性强等特点,并且适合于大量中文文本情感分类应用系统。  相似文献
9.
基于语义理解的文本情感分类方法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
闻彬  何婷婷  罗乐  宋乐  王倩 《计算机科学》2010,37(6):261-264
文本情感分类方法在信息过滤、信息安全、信息推荐中都有广泛的应用.提出一种基于语义理解的文本情感分类方法,在情感词识别中引入了情感义原,通过赋予概念情感语义,重新定义概念的情感相似度,得到词语情感语义值.分析语义层副词的出现规律及其对文本倾向性判定的影响,实现了基于语义理解的文本情感分类.实验表明,该方法能有效地判定文本情感倾向性.  相似文献
10.
面向中日关系论坛的情感分类问题研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对中日论坛的情感分类问题,研究了特定领域(中日关系论坛)语料的特点,考察了不同特征维数、不同特征权重计算、不同特征选取方法以及限定词类词语对情感分类结果的影响。最后通过对2006年1月份到5月份的中日论坛语料的自动情感分类,推断出该阶段中日关系走势。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号