首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   1篇
  自动化技术   2篇
  2011年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
基于近邻传播算法的半监督聚类   总被引:27,自引:2,他引:25       下载免费PDF全文
肖 宇  于 剑 《软件学报》2008,19(11):2803-2813
提出了一种基于近邻传播(affinity propagation,简称AP)算法的半监督聚类方法.AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,比如:K中心聚类算法.但是,对于一些聚类结构比较复杂的数据集,AP算法往往不能得到很好的聚类结果.使用已知的标签数据或者成对点约束对数据形成的相似度矩阵进行调整,进而达到提高AP算法的聚类性能.实验结果表明,该方法不仅提高了AP对复杂数据的聚类结果,而且在约束对数量较多时,该方法要优于相关比对算法.  相似文献
2.
提出一种混合约束的半监督聚类算法(HCC),综合考虑标号点和成对点约束信息的作用,使两种先验信息在聚类的过程中能以不同的方式发挥作用.给出理论推导、具体算法步骤、实验及分析.实验表明在HCC算法中,标号点对提高聚类结果的作用要比成对点约束信息的作用更明显,算法得到的CRI、聚类数、运行时间等多项指标都比对比算法好.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号