首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
数据库负载管理、性能调优中,开销预测模型是提高其效率的关键技术。首先,由于数据库系统的复杂性和计算机资源的竞争,很难精确地估计不同操作的开销。其次,由于查询计划结构的复杂性,现有研究更多使用笼统的查询信息,而很少利用查询计划中操作层面的信息,并依据这些信息来获得开销模型。另外,现有的研究大多没有真正预测查询的执行时间,而是预测了类似查询优化器中开销模型生成的开销。为了减少负载管理的复杂性,本文提出了基于循环神经网络的精细模型来预测查询开销,以查询计划中的操作行为和其实际运行时间作为特征提取的来源。特别地,考虑到查询计划结构的复杂性,本文采用一种特殊的循环神经网络,长短期记忆(Long-Short Term Memory,LSTM)。给一个特定的查询计划,在该计划实际执行之前,模型就能产生其预测的执行时间。这会比现有数据库的查询优化器产生的开销预估结果(任意单位)更具有参考性;也优于需要在执行开始之后才能预测的查询进度指示器。本文提出的这种创新方法来预测查询执行时间,可以用于解决数据库负载管理中的关键问题。通过实验验证,模型的正确率高于71%,一定程度上证明了方法的可行性。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号