首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  国内免费   10篇
  完全免费   15篇
  自动化技术   42篇
  2018年   2篇
  2017年   7篇
  2016年   12篇
  2015年   8篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
排序方式: 共有42条查询结果,搜索用时 46 毫秒
1.
深度卷积神经网络的显著性检测   总被引:3,自引:3,他引:0       下载免费PDF全文
目的 显著性检测问题是近年来的研究热点之一,针对许多传统方法都存在着特征学习不足和鲁棒检测效果不好等问题,提出一种新的基于深度卷积神经网络的显著性检测模型.方法 首先,利用超像素的方法聚类相似特征的像素点,仿人脑视皮层细胞提取目标边缘,得到区域和边缘特征.然后,通过深度卷积神经网络学习图像的区域与边缘特征,获取相应的目标检测显著度置信图.最后,将深度卷积神经网络输出的置信度融入到条件随机场,求取能量最小化,实现显著性与非显著性判别,完成显著性检测任务.结果 在两个常用的视觉检测数据库上进行实验,本文算法的检测精度与当前最好的方法相比,在MSAR数据库上检测精度相对提升大约1.5%,在Berkeley数据库上提升效果更加明显,达到了5%.此外,无论是自然场景还是人工建筑场景、大目标与小目标,检测的效果都是最好的.结论 本文融合多特征的深度学习方法与单一浅层人工特征的方法相比更有优势,它避免了手工标定特征所带来的不确定性,具有更好的鲁棒性与普适性,从主观视觉愉悦度和客观检测准确度两方面说明了算法的有效性.  相似文献
2.
显著性检测指导的高光区域修复   总被引:2,自引:1,他引:1  
目的为解决传统的基于光照模型的高光修复算法无法很好地对高光区域存在饱和现象的单幅图像进行处理这一问题,提出一种显著性检测指导的高光区域修复算法。方法首先在亮度空间应用显著性模型,实现高光区域的自动检测和标记,之后运用改进的Exemplar-Based算法,综合利用图像的邻域和边缘信息,对标记的高光区域进行自适应修复,去除图像中的高光。结果分别对仿真及自然场景下的高光图像进行测试,实验结果表明,与原修复算法和传统高光去除算法相比,所提算法的修复效果更符合人眼视觉、修复后的图像质量更好。结论本文算法与Exemplar-Based算法及Tan方法相比,对高光区域存在饱和现象的单幅图像有较好的修复效果,并且有效地克服了传统高光去除算法受光照模型限制的缺点。  相似文献
3.
基于局部显著区域的自然场景识别   总被引:1,自引:1,他引:5       下载免费PDF全文
场景识别是移动机器人实现拓扑导航的关键。针对未知环境,提出一种基于视觉局部显著区域的自然场景识别方法。首先,提出带反馈的显著性检测模型(FSDM)自底向上进行图像分析;然后,根据显著位置,基于分形实现自动尺度选择,以构造合适尺寸的局部显著区域。对场景图像中的显著区域采用梯度方向、二阶不变矩、归一化色调3种特征进行不变性表示,并根据其匹配率实现场景识别。实验结果表明,FSDM具有较高的显著性检测精度。而且室内室外环境的多次场景识别实验也表明,该方法与全局外观方法相比能够更好地容忍尺度、视角等变化引起的差异,静态场景识别具有较高的准确性。  相似文献
4.
融合双层信息的显著性检测   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 针对已有工作在颜色及结构显著性描述方面的缺陷,提出一种新的图像显著性检测方法。方法 本文方法在不同的图像区域表达上从颜色与空间结构角度计算图像的显著性,充分考虑图像的特征与像素聚类方式之间的适应性。首先,根据颜色复杂度、边缘与连通性等信息,将图像从像素空间映射到双层区域表示空间。然后,根据两个层次空间的特性,与每个图像区域的边界特性,计算图像的结构和颜色显著度。最后,由于不同图像表示中的显著性信息存在互补性,将所有这些信息进行融合得到最终的显著性图。结果 在公认的MSRA-1000数据集上验证本文方法并与目前国际上流行的方法进行对比。实验结果表明,本文方法在精确率、召回率以及绝对误差(分别为75.03%、89.39%、85.61%)等方面要优于当前前沿的方法。结论 提出了一种融合双层信息的显著性检测算法。根据图像本身信息控制区域数目构建图像双层表示,提高了方法的普适性;利用图像不同层次的特性从不同角度计算显著性,增强了方法鲁棒性。  相似文献
5.
曹林  朱国刚 《计算机工程与设计》2016,(4):1011-1016,1041
提出一种基于三维时空直方图特征的人体行为识别方法。通过引入时间维度构建三维时空概念,探索时空中梯度方向信息,由梯度方向经过空间中不同的区域形成梯度直方图,获取时空特征矩阵,结合K均值聚类提取时空直方图特征来描述人体行为;采用图像显著性检测算法,获取人体行为轮廓,从轮廓图中提取二维轮廓特征;将获得的特征输入支持向量机进行训练以及人体行为识别。实验结果表明,相比其它特征描述的方法,该方案对人体行为的特征描述更丰富,识别准确率更高。  相似文献
6.
图像处理与模式识别技术一样,依赖于高质量的视觉显著性图(saliency map)才能得到较好的处理结果.现有的视觉显著性检测技术通常只能检测得到粗糙的视觉显著性图;这些粗糙的视觉显著性图应用于图像处理中将严重影响图像处理的最终结果.本文提出了一种随机的基于内容的视觉显著性区域检测算法;该算法整合多层次粗糙的视觉显著性图到结果显著性图中,并逐步自适应地精化可信度不高的显著性值,最终得到一个考虑了多尺度特征的精细的视觉显著性结果.因为随机算法具有执行效率高,占用内存少等特点;本文的高效随机视觉显著性检测算法不需要建立额外的辅助数据结构来加速算法,只需占用少量内存就能快速检测出精细的高质量视觉显著性结果.并且高效随机的视觉显著性检测算法可以直接移植到GPU上并行执行;大量的实验结果表明本文的算法可以得到更加精细的显著性结果,这些精细的显著性结果应用于基于内容的图像缩放中得到了较好的处理结果.  相似文献
7.
提出了一种新的自动抠图算法框架。首先,估计输入图像各个区域的模糊程度;其次,对图像进行显著性的计算;然后融合模糊度和显著性信息,大致分割出前景和背景,从而自动生成标注前景、背景、未知区域的三色图;最后,采用基于采样的抠图算法就可以准确地完成前景目标物体的自动抠图。该算法无须人工辅助或附加信息。在标准数据集和实拍图像上的实验结果证明了该算法的准确性和实用性,可广泛应用于图像和视频的编辑合成。  相似文献
8.
任蕾  施朝健  冉鑫 《计算机工程与应用》2012,48(23):161-164,172
提出一种应用奇异值分解的海上场景显著性检测方法。提取海上场景图像中颜色和亮度各通道特征,并对各其分别进行奇异值分解,根据设定的阈值,选择各特征的典型分量。各特征的粗显著图定义为各特征和其典型分量的差。为进一步去除海杂波等干扰,在粗显著图中,计算其空间域全局显著性,以此形成显著性图。得到的颜色通道和亮度通道显著图通过线性合并为总显著图。利用海上场景图像进行了实验,结果表明提出方法的有效性。  相似文献
9.
在分析了现有拣选系统需要事先进行样本特征提取的情况下,为适应复杂多变的拣选环境,提出了基于显著性检测的自适应目标拣选算法.该方法通过前景目标的相互对比,识别出最具显著性特征的物体作为拣选对象,避免了预先学习的过程,并能用分析结果不断修正识别特征,提高了系统的工作效率和自动化程度.设计了适用于工业机器人的拾取控制系统,涉及网络通信、总线管理和运动控制等多方面.实验结果表明了系统的准确性与稳定性.  相似文献
10.
为增强图像的显著性检测效果,提出了一种基于图像聚类与均匀分布的显著性检测算法.首先用聚类算法对图像进行预处理,突显出图像中感兴趣的目标区域;然后对聚类后的图像进行均匀的显著性检测,在此过程中采用双边滤波对粗糙的金字塔显著性图像进行精化;最后将多层次的视觉显著性图整合到结果显著性图中.大量实验结果比较表明,该算法可以得到更准确、与人类视觉注意机制较为一致的显著性检测结果.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号