首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  国内免费   1篇
  完全免费   16篇
  自动化技术   32篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
基于社会化标注的博客标签推荐方法   总被引:1,自引:0,他引:1  
为了提高博客系统推荐标签的质量,分析了现有的标签推荐算法及相关技术,提出了一种基于社会化标注的博客标签推荐方法。该方法的优势在于:利用相似博客的社会化标签作为候选标签集,确保了推荐标签的全面性和可用性;基于TF-IDF相似度方法定义筛选步骤去除候选标签集中冗余和冷僻的标签,提高了推荐标签的准确性和高效性。实验结果表明了该方法的有效性。  相似文献
2.
不同粒度标签推荐算法的比较研究*   总被引:1,自引:1,他引:0       下载免费PDF全文
针对社会标签系统中不同粒度的特征在表示文档时具有不同的描述能力这一特性,提出从词粒度和话题粒度来推荐社会标签以提高标签推荐的准确度。提出使用统计语言模型(词粒度)和隐含话题模型(话题粒度)分别建模文档的描述集和标签集,首先使用单个模型进行标签推荐,然后融合不同的特征粒度进行标签推荐。实验结果表明:就单一方法讲,基于统计语言模型的推荐性能要比基于话题粒度模型的推荐性能好;基于两种方法的混合方法的性能要好于没有混合的基于话题的单个方法;涉及较少特征的混合方法的推荐性能要优于涉及较多特征的混合方法。  相似文献
3.
基于张量分解的个性化标签推荐算法   总被引:1,自引:0,他引:1       下载免费PDF全文
基于互联网的社会标签推荐系统为广大用户提供了一个信息共享平台,让用户以"标签"的形式为其浏览的物品标注信息。标签既描述了物品语义,又反映了用户偏好。标签系统的最大优势在于可以发挥群体的智能,获得用户对物品比较准确的关键词描述,而准确的标签信息是提升个性化推荐系统性能的重要资源。然而,现存的标签推荐系统面临的问题是:由于兴趣的不同,不同的用户对于同一物品可能会打不同的标签,或者是同一标签对于不同用户可能会蕴含不同的语义。因此如何有效获取用户、物品、标签3者之间潜在的语义关联成为标签推荐系统需要解决的主要问题。为此引入三维张量模型,利用三维张量的3个维度来分别描述社会标签推荐系统中3种类型的实体:用户、物品、标签。在基于历史标签数据(标签元数据)构建初始张量的基础上,应用高阶奇异值分解(HOSVD)方法降低张量维度,同时实现3种类型实体之间潜在的语义关联分析,从而进一步提高标签推荐系统的准确性。实验结果表明,该方法较当前两种典型的标签推荐算法(FolkRank和PR)在准确率和召回率性能指标上有明显提升。  相似文献
4.
信息资源在分发共享过程中存在带宽拥塞、内容冗余等问题,播存网络借助"一点对无限点"的物理广播分发共享信息资源,对解决此类问题有独特优势.播存网络采用统一内容标签(uniform content label,UCL)适配用户兴趣和推荐信息资源,用户如何高效地获得自己感兴趣的UCL是播存网络中的关键问题.针对该问题,提出一种播存网络环境下的UCL协同过滤推荐方法(unifying collaborative filtering with popularity and timing,UCF-PT).首先,通过设定一对相似度阈值来计算用户与UCL数据的稀疏情况,根据稀疏情况决定二者对UCL评分的影响权值,并基于二者权值预测用户对UCL的评分,生成推荐结果集.其次,依据UCL热度调整推荐结果集的UCL顺序,从而使热门UCL更容易推荐给用户;最后提出UCL价值衰减函数,保证较新的UCL具备较高的推荐优先级.实验结果表明:与传统推荐方法相比,该方法不仅具有良好的推荐精度,还可保证所推荐UCL的热度与时效性,更适用于在播存网络环境下推荐UCL.  相似文献
5.
现有的标签推荐方法大多根据标签在对象中出现的次数来表示用户,标签与资源之间的关系。这种方法对标签信息的利用过于简单,导致最终的推荐结果的准确度和召回率不高。基于这个问题,提出一种采用图模型的个性化标签推荐方法,将用户、标签和资源三者的关系转换成一个三元无向图。对图中相邻顶点的处理采用一种综合的权重衡量方法,而不相邻顶点的关系采用最短路径思想得出。既考虑标签与用户的关系,又考虑标签与资源的关系给出最后的标签推荐方法。将该方法与现存的标签推荐方法做比较。实验采用的数据来自CiteULike。实验结果表明,该方法能够显著地提高推荐结果的召回率,准确性等。  相似文献
6.
社会化标签系统允许用户使用个性化的词汇对网络中的资源进行标注而被用户广泛接受。在微博网络中,用户可以为自己加注标签以推广自己或者方便别人找到自己。深入分析了微博用户数据,总结了微博用户标签的特点,针对LDA(latent Dirichlet allocation)主题模型在处理短文本时存在的不足,提出了一种基于好友关系约束主题模型。在此基础上对微博用户标签进行主题分析,计算用户的主题分布,对标签词进行聚类,并最终为用户推荐标签。通过对比实验证明了该方法可以提高标签推荐的准确度。  相似文献
7.
利用来自Delicious的数据集,结合内容相似度的挖掘和语义关系处理,对社会化标签系统的用户推荐的算法进行了研究.具体工作为:利用标签和书签的语义关系,定义用户的内容信息,从而计算内容相似度;建立内容相似度与社会网络的用户链接关系,通过可重启的随机游走算法(RWR)结合来达成理想的效果.实验评测显示,无论是精确度还是召回率,该算法的效果都要明显优于baseline的算法.  相似文献
8.
网页广告与当前页面内容不匹配使得广告的投放效果降低。本文使用基于站点的贝叶斯模型扩展和基于维基百科的语义扩展两种方法,精确提取网页的标签信息,用更加精确的标签去匹配网络广告,增强了广告效果。本文实现了一个基于语义扩展的网页标签推荐系统,实验证实效果良好。  相似文献
9.
信息社会中在线百科已成为人们获取知识的重要途径,而在线百科的标签系统作为其重要组成部分,不仅可以帮助人们在浏览某张页面时获取其他相关页面的信息,而且对于海量文本分类,以及提高在线百科检索系统的检索效率都有很大帮助。充分利用在线百科页面间的链接关系,提出了一种基于页面间的同质性原理和向量空间模型的全新针对在线百科的标签推荐算法HVSM(homogeneous principle based vector space model)。该标签推荐算法具有普适性,可在不同在线百科系统间推荐标签。实验结果表明,通过与朴素推荐算法NAM(nave recomm endation model)进行比较,新的推荐算法可以达到更高的准确率。并且通过对实验数据进行分析,得到了若干有益的结论,为今后的研究工作奠定了基础。  相似文献
10.
为进一步提升标签推荐的质量,提出一种考虑用户当前标注状态的标签推荐方法.首先根据统计分析方法发现社会标签系统中用户使用的标签总数随时间有一定的变化规律,因此提出当前用户标注状态可能属于下列3种情况之一:成长态、成熟态和休眠态,并给出相关定义.然后根据3种用户标注状态的不同特点,提出不同策略下计算标签的概率分布,为用户推荐最可能使用的标签.对比实验表明文中方法能提供更准确的推荐结果.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号