首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   3篇
  自动化技术   6篇
  2015年   1篇
  2014年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
基于核的组播路由协议使用核节点作为传输中心,所有的组播数据首先被单播到核节点,然后再通过以核节点为根的分发树组播到目的节点.核节点的选择直接影响单播和组播的总代价.以总代价最小为目标,提出了核选择的完全算法和近似算法.  相似文献
2.
核函数及其参数的选择是支持向量机(SVM)研究中的一个核心问题.正交多项式的正交性和可变性使其可以构造通用核函数以代替多项式核、高斯核等常用核函数.基于正交多项式构造核函数的参数仅在自然数中取值,因而能较大地简化核参数的选择.分析基于切比雪夫多项式、埃尔米特多项式、勒让德多项式及拉盖尔多项式构造的6类正交多项式核函数的性质,并在多个数据集上对比这些核函数的鲁棒性和泛化性,所得结论可为选择这些核函数进行支持向量分类提供理论依据和技术支持.  相似文献
3.
核选择是支撑向量机(Support Vector Machine,SVM)研究中的核心问题之一。提出了一种基于数据分布特征的SVM核函数选择的方法。分析了几种常用核函数的性能,提出了判断数据呈球状分布的方法,探讨了SVM核函数及其参数选择与数据分布的相关性。数值实验说明了该方法的可行性与有效性。  相似文献
4.
核选择问题是支持向量机(Support Vector Machine,SVM)建模中的一个关键问题,虽然支持向量机具有良好的泛化性能,但其性能受核函数的影响比较明显,而对于一个给定问题,选择合适的核函数及参数通常很困难。提出一种基于SVM集成的核选择方法,利用不同的核函数构造子SVM学习器,然后对子学习器的预测结果集成。提出的核选择方法将SVM集成学习与核选择同时进行,不仅避免了单个SVM的核选择对泛化能力的影响,而且可以获得良好的泛化能力。在UCI标准数据集上的结果说明了提出的方法的有效性。  相似文献
5.
田萌  王文剑 《计算机科学》2014,41(5):239-242,274
核函数及其参数的选择是决定支持向量机(support vector machine,SVM)分类性能的关键。基于埃尔米特多项式,利用三角核函数构造并证明了一类改进的埃尔米特核函数——三角埃尔米特核函数。该类核函数含两个核参数,其中一个核参数可由样本点到样本均值的距离简单确定,而另一个核参数仅在自然数集中选取,从而简化了该类核函数的参数优化。在双螺线数据集、棋盘格数据集及7个UCI数据集上的实验表明,该类核函数比常见的多项式核函数、高斯核函数及文献[6]提出的埃尔米特核函数有着更好的泛化性能和鲁棒性。  相似文献
6.
王裴岩  蔡东风 《软件学报》2015,26(11):2856-2868
核方法是一类应用较为广泛的机器学习算法,已被应用于分类、聚类、回归和特征选择等方面.核函数的选择与参数优化一直是影响核方法效果的核心问题,从而推动了核度量标准,特别是普适性核度量标准的研究.对应用最为广泛的5种普适性核度量标准进行了分析与比较研究,包括KTA,EKTA,CKTA,FSM和KCSM.发现上述5种普适性度量标准的度量内容为特征空间中线性假设的平均间隔,与支持向量机最大化最小间隔的优化标准存在偏差.然后,使用模拟数据分析了上述标准的类别分布敏感性、线性平移敏感性、异方差数据敏感性,发现上述标准仅是核度量的充分非必要条件,好的核函数可能获得较低的度量值.最后,在9个UCI数据集和20Newsgroups数据集上比较了上述标准的度量效果,发现CKTA是度量效果最好的普适性核度量标准.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号