首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   5篇
  自动化技术   8篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
为提高推荐系统在数据稀疏情况下的推荐质量,提出一种基于用户特征迁移的协同过滤推荐模型.利用矩阵分解技术提取辅助领域的用户特征,通过建立正则项约束的矩阵分解模型,将辅助领域的用户特征迁移到目标领域中,协助目标领域用户特征的学习,最终生成目标领域的用户推荐.设计快速收敛的Wiberg算法得到模型的最优解,并对实际应用中的可行性进行分析.通过对2个公开数据集的实验结果表明,该模型能够实现辅助领域用户特征的迁移,有效提高目标领域的推荐质量.  相似文献
2.
在脑电图( EEG)信号识别中,EEG信号的采样环境、病人状态的多样性导致分类器训练所用的源域与分类器测试所用的目标域不匹配,分类器在目标域上表现不佳。为此,引入邻域适应策略,提出一种基于子空间相似度的改进主成分分析特征提取方法( SSM-PCA),在选择主成分时,考虑源域和目标域数据的几何和统计特性,并结合迁移学习分类器大间隔投射迁移支持向量机( LMPROJ),给出以SSM-PCA为基础的LMPROJ分类识别方法。实验结果表明,与结合PCA特征抽取技术和K近邻分类器实现的识别方法相比,该方法在识别正确率方面得到较大提升。  相似文献
3.
传统上下文在分类研究中通常存在失真和有效性等问题。引入研究对象领域的相似领域作为上下文,借助迁移学习理论,使用结构化相似性学习方法构建研究对象领域和其相似领域间的低维共享特征,提出一种基于相似领域共享特征的分类学习模型。实验以QQ空间的个性化设置数据作为上下文,对用户电子商务网站页面的风格偏好进行分类,验证了所提模型的可行性和有效性。  相似文献
4.
文本的情感分类问题是近年来数据挖掘领域的一个研究热点。传统做法常用监督分类方法对文本进行情感分类时,其前提是假设训练集与测试集的数据分布相同,然而在实际情况下已标注数据与测试数据常常不属于同一个领域,这种数据分布差异导致文本情感分类准确率下降。为了解决以上问题,本文提出了一种基于EM算法的跨领域情感分类方法,首先从多个源领域结合目标领域生成一个情感倾向参考表,其次利用改进的EM算法参考该表迭代调节目标领域分类器的分类结果直到该结果可以与参考表匹配。实验结果表明,本文提出的方法在一定程度上提高了跨领域情感分类的准确性。  相似文献
5.
特征迁移重在领域共有特征间学习,然而其忽略领域特有特征的判别信息,使算法的适应性受到一定的局限. 针对此问题,提出了一种融合异构特征的子空间迁移学习(The subspace transfer learning algorithm integrating with heterogeneous features,STL-IHF)算法.该算法将数据的特征空间看成共享和特有两个特征子空间的组合,同时基于经验风险最 小框架将共享特征和特有特征共同嵌入到支持向量机(Support vector machine,SVM)的训练过程中.其在共享特征子空间上实现知识迁移的 同时兼顾了领域特有的异构信息,增强了算法的适应性.模拟和真实数据集上的实验结果表明了所提方法的有效性.  相似文献
6.
针对多物种鸟声识别中多物种鸟声样本不足的问题,尝试采用单物种鸟声样本训练多物种鸟声识别模型,并提出一种基于特征迁移的多物种鸟声识别方法。该方法引入特征迁移学习算法,利用最大均值差异(Maximum mean discrepancy,MMD)度量鸟声样本特征分布差异,将不同分布的单物种鸟声和多物种鸟声的音频特征映射为同分布的潜在音频特征,再基于同分布的音频特征构造识别模型。使得单物种鸟声样本训练的识别模型也能够适用于多物种鸟声识别 。在自然形成的多物种鸟声数据集上,算法在4项多标记评价指标上都取得了较好的识别效果;在人工构造的多物种鸟声数据集上对比试验表明,基于特征迁移的识别算法在单个物种上的正确识别率相较于对比算法最高提升了20%。  相似文献
7.
为了解决语音情感识别系统中训练数据和测试数据来自不同数据 库所引起的识别率降低的问题,提出了一种基于稀疏特征迁移的语音情感识别方法。通过引入稀疏编码获取情感特征在不同数据库条件下的共同稀疏表示;同时引入最大区分差异(Maximum mean discrepancy, MMD)来衡量不同数据库条件下稀疏表示分布之间的距离,并将其作为稀疏编码目标函数的约束条件,从而获得较为鲁棒的稀疏特征。实验结果表明,相比传统语音情感识别方法,基于稀疏特征迁移的语音情感识别方法显著提高了跨库条件下的情感识别率。  相似文献
8.
倪超  陈翔  刘望舒  顾庆  黄启国  李娜 《软件学报》2019,30(5):1308-1329
在实际软件开发中,需要进行缺陷预测的项目可能是一个新启动项目,或者这个项目的历史训练数据较为稀缺.一种解决方案是利用其他项目(即源项目)已搜集的训练数据来构建模型,并完成对当前项目(即目标项目)的预测.但不同项目的数据集间会存在较大的分布差异性.针对该问题,从特征迁移和实例迁移角度出发,提出了一种两阶段跨项目缺陷预测方法FeCTrA.具体来说,在特征迁移阶段,该方法借助聚类分析选出源项目与目标项目之间具有高分布相似度的特征;在实例迁移阶段,该方法基于TrAdaBoost方法,借助目标项目中的少量已标注实例,从源项目中选出与这些已标注实例分布相近的实例.为了验证FeCTrA方法的有效性,选择Relink数据集和AEEEM数据集作为评测对象,以F1作为评测指标.首先,FeCTrA方法的预测性能要优于仅考虑特征迁移阶段或实例迁移阶段的单阶段方法;其次,与经典的跨项目缺陷预测方法TCA+、Peters过滤法、Burak过滤法以及DCPDP法相比,FeCTrA方法的预测性能在Relink数据集上可以分别提升23%、7.2%、9.8%和38.2%,在AEEEM数据集上可以分别提升96.5%、108.5%、103.6%和107.9%;最后,分析了FeCTrA方法内的影响因素对预测性能的影响,从而为有效使用FeCTrA方法提供了指南.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号