排序方式: 共有301条查询结果,搜索用时 31 毫秒
1.
2.
提出一种两阶段评分预测方法.该方法基于一种新的联合聚类算法(BlockClust)和加权非负矩阵分解算
法.首先对原始矩阵中的评分模式进行用户和物品两个维度的联合聚类,然后在这些类别的内部通过加权非负矩阵
分解方法进行未知评分预测.这种方法的优势在于,首阶段聚类后的矩阵规模远远小于原始评分矩阵,并且同一类别
内部的评分具有相似的模式,这样,在大幅度降低预测阶段计算量的同时又提高了非负矩阵分解算法在面对稀疏矩
阵预测上的准确度.进一步给出了推荐系统的3 种更新模式下如何高效更新预测模型的增量学习方法.在MovieLens数据集上比较了新算法及其他7种相关方法的性能,从而验证了该方法的有效性及其在大型实时推荐系
统中的应用价值. 相似文献
3.
解循环三对角线性方程组的追赶法 总被引:8,自引:0,他引:8
循环三对角、循环 Toeplitz三对角线性方程组的求解在科学与工程计算中有着广泛的应用 .运用矩阵分解给出此类方程组的直接解法 ;通过分析其特性 ,给出了达到机器精度的截断算法 ,其计算复杂度几乎等同于求解一个三对角线性方程组的计算复杂度 .数值实验的结果与理论分析的结果十分吻合 .该算法还推广到求解拟三对角线性方程组 . 相似文献
4.
图像融合的非负矩阵分解算法 总被引:5,自引:0,他引:5
提出一种将非负矩阵分解思想用于图像融合的算法.在非负矩阵分解过程中,适当地选取特征空间的维数可以获取原始数据的局部特征.首先分析了使用非负矩阵分解算法提取图像综合特征的原理,并给出了一个可视化实例;将参与融合的图像作为原始数据,特征空间的维数选为1,利用非负矩阵分解得到的特征基包含了原始图像的整体特征,这个特征基图像就是原始图像的融合结果.多类不同模态图像融合的实验结果表明,文中算法比小波变换的方法具有更好的融合效果. 相似文献
5.
提出了利用小波变换(WT)、非负稀疏矩阵分解(NMFs)和Fisher线性判别(FLD)来进行人脸识别。用小波变换分解人脸图像,选择最低分辨率的子段,既能捕获到人脸的实质特征,又有效地降低了计算复杂性;非负稀疏矩阵分解能显示地控制分解稀疏度和发现人脸图像的局部化表征;Fisher线性判别能在低维子空间中形成良好的分类。实验结果表明,这种方法对光照变化、人脸表情和部分遮挡不敏感,具有良好的健壮性和较高的识别效率。 相似文献
6.
建立在最小化非负矩阵分解损失函数上的人脸识别算法需同时计算基矩阵和系数矩阵, 导致求解这类问题十分耗时. 本文把非负属性引入二维主成分分析(2-dimensional principal component analysis, 2DPCA)中, 提出了一种新的二维投影非负矩阵分解(2-dimensional projective non-negative matrix factorization, 2DPNMF)人脸识别算法. 该算法在保持人脸图像的局部结构情况下, 突破了最小化非负矩阵分解损失函数的约束, 仅需计算投影矩阵(基矩阵), 从而降低了计算复杂度. 本文从理论上证明了所提出算法的收敛性, 同时, 使用了YALE、FERET和AR三个人脸库进行实验, 结果表明2DPNMF不仅识别率高, 而且速度优于非负矩阵分解和二维主成分分析. 相似文献
7.
非负矩阵分解(Non-negative matrix factorization, NMF)是一个近年来非常流行的非负数据处理方法, 它常用于维数约减、特征提取和数据挖掘等. NMF定义中采用的数学模型基于非线性投影结构构造, 这决定了NMF降维需借助计算量很大的迭代操作来实现. 此外, 由此模型提取的NMF特征常不稀疏, 这与NMF的设计期望相差甚远. 为一并解决上述两个问题, 本文提出了一个新的模型---基于线性投影结构的NMF (Linear projection-based NMF, LPBNMF), 并构造了一个单调的LPBNMF算法. 从数学的角度看, LPBNMF可理解为实现NMF的一种特殊方式. LPBNMF降维通过线性变换来完成, 它所采用的数学模型的自身结构特点决定了由其得到的特征一定非常稀疏. 大量的比较实验表明, PBNMF的降维效率显著高于NMF, LPBNMF特征明显比NMF特征更稀疏和局部化. 最后, 基于AR人脸数据库的实验揭示, LPBNMF特征比NMF、LDA以及PCA等特征更适合于用最近邻分类法处理有遮挡人脸识别问题. 相似文献
8.
9.
10.
非负矩阵分解:数学的奇妙力量 总被引:3,自引:0,他引:3
计算机是人类解决难题、探索未知以及提供娱乐的绝佳工具。在高效运行着的各种计算机应用背后,融汇了人类在物理、电子和数学等多门学科的高超智慧。严密的数学使得计算机能高效执行人类指令,控制内部各种数据流的走向,因此在现代计算机科学研究中,数学的基础地位和重要作用无可替代。它使我们最大程度利用有限的硬件、软件资源,它使我们能够在浩瀚的数据海洋中快速查到所关心的信息……数学与计算机科学一起演绎了许多精彩的故事! 相似文献