首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  国内免费   5篇
  完全免费   3篇
  自动化技术   16篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
稀疏约束下非负矩阵分解的增量学习算法   总被引:1,自引:1,他引:0       下载免费PDF全文
王万良  蔡竞 《计算机科学》2014,41(8):241-244
非负矩阵分解(NMF)是一种有效的子空间降维方法。为了改善非负矩阵分解运算规模随训练样本增多而不断增大的现象,同时提高分解后数据的稀疏性,提出了一种稀疏约束下非负矩阵分解的增量学习算法,该算法在稀疏约束的条件下利用前一次分解的结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和CBCL人脸数据库上的实验表明了该算法降维的有效性。  相似文献
2.
考虑自然图像的先验稀疏结构及其特征子空间的局部性,在局部非负矩阵分解(LNMF)算法的基础上,提出一种具有稀疏约束的局部非负矩阵分解(SC-LNMF)神经网络算法。使用两类自然属性不同的图像在不同的维数下对SC-LNMF网络进行训练,该方法都能成功地提取出训练图像的局部特征。与NMF、LNMF特征提取方法相比,实验对比结果证明了SC-LNMF算法能够模拟大脑初级视觉系统V1区感受野的特性,进一步证实了该算法在图像局部特征提取中的有效性和实用性。  相似文献
3.
人脸识别技术中除光线、姿态、表情因素外,由于年龄变化而导致的人脸形状和纹理上的变化会极大程度地影响人脸识别系统性能.对此,提出了一种使用稀疏非负矩阵分解算法来实现人脸老化模拟,然后将此方法应用于具有年龄跨度的人脸识别上,通过模拟虚拟样本来增强识别效果.实验结果表明,年龄跨度对人脸识别的确有较大的影响;当系数矩阵保持稀疏时,非负矩阵分解算法具有更强的特征提取能力;经过老化模拟增加虚拟样本后,其纹理老化效果明显地提高了跨年龄段的人脸识别的性能.  相似文献
4.
为了充分利用图像本身的结构信息并充分压缩图像数据,把得到的子空间中数据(反馈)的稀疏性作为约束项加入非负张量分解目标函数中,即采用基于反馈稀疏约束的非负张量分解算法对图像集合进行降维.最后,将该算法应用于手写数字图像库中,实验结果表明所提出的方法能有效改善图像分类的准确性.  相似文献
5.
为提高稀疏非负矩阵分解(SNMF)算法对含噪声图像提取特征的有效性,引入噪声项,并结合SNMF设计新的稀疏优化目标函数,给出该目标函数的优化求解表达式,使提取出的特征具有稀疏性且能增强噪声抵抗能力。针对手机图像,提出一种强鲁棒性的SNMF算法,描述手机待分类界面图和模板子图集概念,以获取手机图像特征,并结合支持向量机实现分类识别。应用结果表明,该算法能够对图像数据进行大规模压缩获取手机图像特征,具有较强的鲁棒性,且以稀疏矩阵作为计算分类识别的目标矩阵,具备较高的识别率。  相似文献
6.
在处理高维数据过程中,特征选择是一个非常重要的数据降维步骤.低秩表示模型具有揭示数据全局结构信息的能力和一定的鉴别能力.稀疏表示模型能够利用较少的连接关系揭示数据的本质结构信息.在低秩表示模型的基础上引入稀疏约束项,构建一种低秩稀疏表示模型学习数据间的低秩稀疏相似度矩阵;基于该矩阵提出一种低秩稀疏评分机制用于非监督特征选择.在不同数据库上将选择后的特征进行聚类和分类实验,同传统特征选择算法进行比较.实验结果表明了低秩特征选择算法的有效性.  相似文献
7.
为了选择有效的图像特征,并将这些特征融合以进行图像的显著区域检测,提出一种基于图像特征稀疏约束的显著性检测算法。该算法首先建立一个包括多种图像特征的特征池,之后假设图像的显著图由特征池中特征的线性组合来表示,并用线性回归的方法从眼动追踪数据库的信息中学习出该线性组合的权重参数;在学习的过程中,对线性回归的系数加一个稀疏约束条件,使得某些不重要特征对应的系数在最优化过程中自动收缩为0,从而达到特征选择的目的。实验结果表明,该模型的检测时间较短,可以得到较高的检测准确率。与传统基于特征融合的显著性检测模型相比,本算法避免了选择特征和构造融合参数的盲目性。  相似文献
8.
姜小燕  孙福明  李豪杰 《计算机科学》2016,43(7):77-82, 105
非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对基矩阵施加稀疏性约束,最后将它们整合于单个目标函数中。构造了一个有效的更新算法,并且在理论上证明了该算法的收敛性。在多个人脸数据库上的仿真结果表明,相对于NMF、GNMF、CNMF等算法,GCNMFS具有更好的聚类精度和稀疏性。  相似文献
9.
低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务. 为了提高传统的基于非负矩阵分解(nonnegative matrix factorization, NMF)的语音增强算法性能, 同时考虑到语音信号的时频稀疏特性和非稳态噪声信号的低秩特性, 本文提出了一种基于多重约束的非负矩阵分解语音增强算法(multi-constraint nonnegative matrix factorization speech enhancement, MC–NMFSE). 在训练阶段, 采用干净语音训练数据集和噪声训练数据集分别构建语音字典和噪声字典. 在语音增强阶段, 在非负矩阵分解目标函数中增加语音分量的稀疏性约束和噪声信号的低秩性约束条件, MC–NMFSE能够更好地从带噪语音中获得语音分量的表示, 从而提高语音增强效果. 通过实验表明, 在大量不同非平稳噪声条件和不同信噪比条件下, 与传统的基于NMF的语音增强方法相比, MC–NMFSE能获得较低的语音失真和更好的非稳态噪声抑制能力.  相似文献
10.
传统的人耳识别算法在人耳图像遮挡、噪声和人耳多姿态变化中表现出低识别率,近年来稀疏表示在模式识别领域中取得很好的成果。决定稀疏分类器识别精确度的因素主要是稀疏解的稀疏度。而稀疏度的估计就是稀疏向量中非0元素的估计,即向量L0范数。因此在人耳稀疏分类算法的研究中引入L0范数稀疏约束。综上所述,采取基于SRC(Sparse Representation-based Classification)稀疏模型,选取对人耳姿态变化具有强鲁棒性的特征逼近过完备字典,然后使用OMP(Orthogonal Matching Pursuit)算法直接解L0问题,并加入稀疏约束,从优化稀疏解的角度对人耳稀疏分类算法进行改进,提高人耳识别效率。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号