首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  国内免费   29篇
  完全免费   183篇
  自动化技术   523篇
  2022年   7篇
  2021年   8篇
  2020年   9篇
  2019年   23篇
  2018年   39篇
  2017年   50篇
  2016年   64篇
  2015年   66篇
  2014年   94篇
  2013年   59篇
  2012年   51篇
  2011年   22篇
  2010年   10篇
  2009年   6篇
  2008年   2篇
  2007年   8篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
排序方式: 共有523条查询结果,搜索用时 46 毫秒
1.
压缩传感综述   总被引:56,自引:11,他引:45       下载免费PDF全文
李树涛  魏丹 《自动化学报》2009,35(11):1369-1377
在传统采样过程中, 为了避免信号失真, 采样频率不得低于信号最高频率的2倍. 然而对于数字图像、视频的获取, 依照香农(Shannon)定理会导致海量采样数据, 大大增加了存储和传输的代价. 近年来, 一种新兴的压缩传感理论为数据采集技术带来了革命性的突破, 得到了研究人员的广泛关注. 压缩传感采用非自适应线性投影来保持信号的原始结构, 能通过数值最优化问题准确重构原始信号. 压缩传感以远低于奈奎斯特频率进行采样, 在压缩成像系统、模拟/信息转换、生物传感等领域有着广阔的应用前景. 本文主要介绍了压缩传感的基本理论及相关应用, 并对其研究前景进行了展望.  相似文献
2.
结构化压缩感知研究进展   总被引:11,自引:8,他引:3       下载免费PDF全文
刘芳  武娇  杨淑媛  焦李成 《自动化学报》2013,39(12):1980-1995
压缩感知(Compressive sensing,CS)是一种全新的信息采集与处理的理论框架. 借助信号内在的稀疏性或可压缩性,可从小规模的线性、非自适应的测量中通过非线性优化的方法重构信号. 结构化压缩感知是在传统压缩感知基础上形成的新的理论框架,旨在将与数据采集硬件及复杂信号模型相匹配的先验信息引入传统压缩感知,从而实现对更广泛类型的信号准确有效的重建. 本文围绕压缩感知的三个基本问题,从结构化测量方法、结构化稀疏表示和结构化信号重构三个方面对结构化压缩感知的基本模型和关键技术进行详细的阐述,综述了结构化压缩感知的最新的研究成果,指出结构化压缩感知进一步研究的方向.  相似文献
3.
一种新的图像稀疏分解快速算法   总被引:8,自引:0,他引:8  
尹忠科  王建英 《计算机应用》2004,24(10):92-93,96
图像的稀疏表示特别适合于图像的处理,而求得图像稀疏表示的图像稀疏分解的计算量十分巨大。利用基于Matching Pursuit(MP)方法实现的图像稀疏分解算法,采用遗传算法快速寻找MP过程中每一步分解的最佳原子。根据寻找最佳原子的遗传算法的内在特点,提出了一种优化的快速算法。算法的有效性为实验结果所证实。  相似文献
4.
基于词典学习和稀疏表示的超分辨率方法   总被引:7,自引:1,他引:6  
近年来,从大规模数据集中提取过完备词典,并使用稀疏表示在图像去噪、图像去马赛克和图像修复中有着较广泛应用.然而,这一技术不能直接用于处理具有异构特点的低分辨率/高分辨率图像块对,以及相应的图像超分辨率重构.要解决这一问题,文中提出一种求解同时满足两个过完备词典(低分辨率图像块词典和高分辨率图像块词典)下的相同稀疏表示的方法,并利用它们实现图像稀疏表示的超分辨率重建.为了进一步提高彩色图像的超分辨率效果,还提出基于超分辨率亮度信息的UV色度超分辨率重构.实验结果表明文中方法无论在视觉效果还是均方根误差上都获得更好结果.  相似文献
5.
字典学习模型、算法及其应用研究进展   总被引:6,自引:0,他引:6       下载免费PDF全文
稀疏表示模型常利用训练样本学习过完备字典, 旨在获得信号的冗余稀疏表示. 设计简单、高效、通用性强的字典学习算法是目前的主要研究方向之一, 也是信息领域的研究热点. 基于综合稀疏模型的字典学习方法已经广泛应用于图像分类、图像去噪、图像超分辨率和压缩成像等领域. 近些年来, 解析稀疏模型、盲字典模型和信息复杂度模型等新模型的出现丰富了字典学习理论, 使得更广泛类型的信号能够被"简单性"描述. 本文详细介绍了综合字典、解析字典、盲字典和基于信息复杂度字典学习的基本模型及其算法, 阐述了字典学习的典型应用, 指出了字典学习的进一步研究方向.  相似文献
6.
稀疏子空间聚类综述   总被引:5,自引:2,他引:3       下载免费PDF全文
稀疏子空间聚类(Sparse subspace clustering, SSC)是一种基于谱聚类的数据聚类框架. 高维数据通常分布于若干个低维子空间的并上, 因此高维数据在适当字典下的表示具有稀疏性. 稀疏子空间聚类利用高维数据的稀疏表示系数构造相似度矩阵, 然后利用谱聚类方法得到数据的子空间聚类结果. 其核心是设计能够揭示高维数据真实子空间结构的表示模型, 使得到的表示系数及由此构造的相似度矩阵有助于精确的子空间聚类. 稀疏子空间聚类在机器学习、计算机视觉、图像处理和模式识别等领域已经得到了广泛的研究和应用, 但仍有很大的发展空间. 本文对已有稀疏子空间聚类方法的模型、算法和应用等方面进行详细阐述, 并分析存在的不足, 指出进一步研究的方向.  相似文献
7.
基于Gabor 感知多成份字典的图像稀疏表示算法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
孙玉宝  肖亮  韦志辉  邵文泽 《自动化学报》2008,34(11):1379-1387
如何设计合适的能够匹配各层面几何结构的图像稀疏表示过完备字典, 进而形成对图像的稀疏分解是当前研究者关注的热点问题. 根据图像的几何结构特性, 从人类视觉系统特性出发, 建立了匹配各层面图像结构的Gabor感知多成份字典, 进而提出一种高效的基于匹配追踪的图像稀疏分解算法. 实验结果表明: Gabor感知多成份字典具有对图像中平滑、边缘与纹理结构的自适应性, 与Anisotropic refinement-Gaussian (AR-Gauss)混合字典相比以较少的原子实现了对图像更为高效的稀疏分解.  相似文献
8.
Wavelet denoising via sparse representation   总被引:4,自引:0,他引:4  
Wavelet threshold denoising is a powerful method for suppressing noise in signals and images. However, this method often uses a coordinate-wise processing scheme, which ignores the structural properties in the wavelet coefficients. We propose a new wavelet denoising method using sparse representation which is a powerful mathematical tool recently developed. Instead of thresholding wavelet coefficients individually, we minimize the number of non-zero coefficients under certain conditions. The denoised signal is reconstructed by solving an optimization problem. It is shown that the solution to the optimization problem can be obtained uniquely and the estimates of the denoised wavelet coefficients are unbiased, i.e., the statistical means of the estimates are equal to the noise-free wavelet coefficients. It is also shown that at least a local optimal solution to the denoising problem can be found. Our experiments on test data indicate that this new denoising method is effective and efficient for a wide variety of signals including those with low signal-to-noise ratios. Supported by the U.S. National Institutes of Health (Grant No. U01 HL91736), and the National High-Tech Research & Development Program of China (Grant No. 2007AA01Z175)  相似文献
9.
基于稀疏表示的多特征融合害虫图像识别   总被引:4,自引:0,他引:4  
为提高害虫图像识别的准确率,针对不同害虫具有不同的颜色、形状、纹理的特点,提出一种将颜色、形状、纹理特征与稀疏表示相融合的害虫识别方法.该方法利用已标注的训练样本构造不同特征下的训练样本矩阵,通过求解样本的最优稀疏系数以实现害虫图像识别.由于相同样本通过不同特征训练字典求解的稀疏系数不同,进而识别结果也不同.因此,文中进一步通过设计不同特征下的识别分类器实现多特征的融合.在实验室环境与农田环境下的实验结果表明,相较于其他方法,该方法的害虫识别率获得较大的提高.  相似文献
10.
加权局部特征结合判别式字典的目标跟踪   总被引:4,自引:3,他引:1  
目的 当前大多数基于稀疏表示的跟踪方法只考虑全局特征或局部特征的最小重构误差,没有充分利用稀疏编码系数,或者忽略了字典判别性的作用,尤其当目标被相似物遮挡时,往往会导致跟踪目标丢失。针对上述问题,提出一种新的基于判别式字典和加权局部特征的稀疏外观模型(SPAM-DDWF)跟踪算法。方法 首先利用Fisher准则学习判别式字典,对提取的局部特征进行结构性分析来区分目标和背景,其次,提出一种新的基于加权的相似性度量方法来处理遮挡问题,从而提高跟踪的精确度。此外,基于重构系数的权重更新策略,使算法能更好地适应跟踪目标的外观变化,并降低了遮挡发生时跟踪漂移的概率。结果 在多个基准图像序列上,与多种流行方法对比,本文算法在光照变化、复杂背景、遮挡等场景中保持较高的跟踪成功率与较低的漂移误差。平均成功率和漂移误差分别为76.8%和3.7。结论 实验结果表明,本文算法具有较好的有效性和鲁棒性,尤其在目标被相似物遮挡的情况下,也能较准确地跟踪到目标。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号