首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  国内免费   3篇
  完全免费   1篇
  自动化技术   10篇
  2017年   1篇
  2015年   1篇
  2012年   3篇
  2011年   1篇
  2008年   4篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
流形学习算法在模式识别领域有着重要应用,针对文本分类数据的特点,提出一种基于邻域选取进行修正的局部线性嵌入算法,用带有权值的欧式距离来构造文本数据的局部邻域,提高文本分类的识别率;同时,利用文本数据的类别信息,运用半监督局部线性嵌入算法构造分类器,提高文本分类的效果。实验表明,本文基于文本分类改进的流形学习算法,能够有效地对文本进行分类。  相似文献
2.
袁轶  王新房 《计算机工程》2012,38(12):155-157
中文文本分类中传统特征选择算法在低维情况下分类效果不佳。为此,提出一种结合方差思想的评估函数,选出具有较强类别信息的词条,在保证整体分类性能不下降的同时,提高稀有类别的分类精度。采用中心向量分类器,在TanCorpV1.0语料上进行实验,结果表明,该方法在低维空间优势明显,与常用的文档频率、信息增益等9种特征选择算法相比,宏平均值均有较大提高。  相似文献
3.
局部保持投影算法(LPP)是拉普拉斯映射(LE)的线性近似,但LPP作为一种无监督方法,并没有有效利用已有的类别信息提高分类效率。为此提出一种基于类别信息的监督局部保持投影方法(SLPP-LI)。在学习投影矩阵时,SLPP-LI综合利用了流形的几何结构和已有训练点的类别信息,通过调整控制参数的取值,有效地利用已知的低维信息,并且直接求解线性方程获得高维数据的低维模型。通过在多个人脸数据库和手写数字库上的对比实验,表明了SLPP-LI对于高维数据的初始维数以及训练数据的数目并不敏感,与主分量分析法(PCA)、LPP、正交LPP(OLPP)、有监督的LPP(SLPP)相比,均具有较高的识别率,充分说明SLPP-LI算法能够有效处理分类问题。  相似文献
4.
提出了一种结合加权特征向量空间模型和径向基概率神经网络(RBPNN)的文本分类方法.该方法针对传统的文本特征提取方法的不足,根据文本中特征项的位置信息和所属类别信息定义特征权重,然后,依据特征项的权值计算文档特征项的频数,通过TFIDF函数计算特征值并得到文本的特征向量,最后,采用RBPNN网络分类,通过最小二乘算法求解神经网络的第二隐层和输出层之间的权值,最终训练获得文本分类模型.文本分类实验结果表明,该方法在文本分类中表现出较好的效果,具有较好查全率和查准率.  相似文献
5.
本文通过统计的方法抽出各类特有的关联词对对特征空间扩充,在不需要任何特征选择保留样本完整信息的前提下,相比仅以词为特征的KNN分类方法,在newsgroup语料上准确率提高2.07%,在搜狗分类语料上准确率提高1.2%.  相似文献
6.
二维主成分分析(2DPCA)已被成功地应用在人脸识别领域,但是这种2DPCA是无监督方法,投影没有考虑到类别信息,在一定程度上影响了识别性能.因此提出一种新的2DPCA,它利用训练样本的类别标记来生成K-L变换的产生矩阵,融合了样本的类别信息,从而使2DPCA的识别性能更好.基于ORL和Yale人脸数据库的实验表明该方法比传统的2DPCA的识别性能更高.  相似文献
7.
网页自动分类是解决互联网信息检索困难的有效方法.虽然有很多自动分类算法和系统,但是大部分此类算法注重如何将网页准确分到某个独立的类别里面,却忽略类别之间所组成的体系结构本身也具备的一些隐藏分类信息.同时,一般的分类算法每次分类都需要搜索所有的类别.针对这些缺点,提出了一种基于结构的单路径层次化网页分类算法,该分类方法利用类别之间具有树状结构这一特点,对类别中存在父子关系的类别间进行信息传递,使得每次分类只需要搜索树中一条路径而不用遍历所有树节点.实验结果证明,这种单路径搜索技术与相关的算法相比,在减少搜索节点的同时可以提高6%的准确度.  相似文献
8.
提出一种基于类别信息的分类器集成方法Cagging.基于类别信息重复选择样本生成基本分类器的训练集,增强了基本分类器之间的差异性;利用基本分类器对不同模式类的分类能力为每个基本分类器设置一组权重.使用权重对各分类器输出结果进行加权决策,较好地利用了各个基本分类器之间的差异性.在人脸图像库ORL上的实验验证了Cagging的有效性.此外,Cagging方法的基本分类器生成方式适合于通过增量学习生成集成分类器,扩展Cagging设计了基于增量学习的分类器集成方法Cagging-Ⅰ,实验验证了它的有效性.  相似文献
9.
基于核主成分分析(KPCA)理论,提出一种有监督的特征提取方法.该方法在特征提取过程中充分直接利用训练核样本的类别信息,并且在计算上仍采用与KPCA方法类似的数学公式,因此被称为组合类别信息的核主成分分析(CIKPCA).另外,在分类时提出基于两种特征融合的分类策略从而进一步提高CIKPCA方法的识别率.在3个人脸库上进行实验,结果表明本文方法在识别率方面整体超过常用的KPCA方法,甚至超过核线性判别准则方法.  相似文献
10.
邻域保持嵌入通常被广泛用于发现高维数据的固有内在维数.为了充分利用样本的类别信息,构建了一个具有判别信息的邻接矩阵,其可以使同类样本点更加紧凑而异类样本点更加疏远.在此基础上,提出了基于类别信息的邻域保持嵌入算法.基于类别信息的邻域保持嵌入算法在不破坏原始高维数据局部几何结构的同时,可以使处于不同子流形上的样本点尽量分开.在UCI数据集和ORL人脸数据集上的实验结果表明,基于类别信息的邻域保持嵌入算法具有较高的识别率.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号