首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   6篇
  自动化技术   8篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
约束优化进化算法   总被引:25,自引:1,他引:24       下载免费PDF全文
约束优化问题是科学和工程应用领域经常会遇到的一类数学规划问题.近年来,约束优化问题求解已成为进化计算研究的一个重要方向.从约束优化进化算法=约束处理技术+进化算法的研究框架出发,从约束处理技术和进化算法两个基本方面对约束优化进化算法的研究及进展进行了综述.此外,对约束优化进化算法中的一些重要问题进行了探讨.最后进行了各种算法的比较性总结,深入分析了目前约束优化进化算法中亟待解决的问题,并指出了值得进一步研究的方向.  相似文献
2.
一种新的基于正交实验设计的约束优化进化算法   总被引:1,自引:0,他引:1  
提出了一种新的基于正交实验设计的约束优化进化算法.新算法的主要特点是:在搜索机制方面,利用正交实验设计方法安排多个父代个体的交叉操作,提出了一种新的多父体正交交叉算子,新的交叉算子能够有效利用多个父代个体所携带的信息产生新的具有代表性的子代个体.此外,利用单形交叉算子对父代种群进行并行搜索,以协调算法的勘探和开采能力.在约束处理技术上,新算法引入了一个衡量个体优、劣的新比较准则.通过13个标准的测试函数验证了算法的通用性和有效性.  相似文献
3.
聚类佳点集交叉的约束优化混合进化算法   总被引:1,自引:0,他引:1  
提出一种基于聚类佳点集多父代交叉和自适应约束处理技术的混合进化算法用于求解约束优化问题.新算法的主要特点是:在搜索机制方面,利用佳点集方法构造初始化种群,使个体能够均匀地分布在整个搜索空间.然后根据父代个体的相似度将种群个体进行聚类分析,从聚类中随机选择个体进行佳点集多父代交叉操作,利用多个父代个体所携带的信息产生新的具有代表性的子代个体,能够维持和增加种群的多样性.另外,引入局部搜索策略以提高算法局部搜索能力和收敛速度.在约束处理技术上,新算法引入了一个自适应约束处理技术,即根据当前种群中可行解的比例自适应选择不同的个体比较准则.通过15个标准测试函数验证了新算法的有效性.  相似文献
4.
动态非线性约束优化是一类复杂的动态优化问题,其求解的困难主要在于如何处理问题的约束及时间(环境)变量。给出了一类定义在离散时间(环境)空间上的动态非线性约束优化问题的新解法,从问题的约束条件出发构造了一个新的动态熵函数,利用此函数将原优化问题转化成了两个目标的动态优化问题。进一步设计了新的杂交算子和带局部搜索的变异算子,提出了一种新的多目标优化求解进化算法。通过对两个动态非线性约束优化问题的计算仿真,表明该算法是有效的。  相似文献
5.
高维尚  邵诚 《自动化学报》2014,40(11):2469-2479
进化算法的迅速发展,为非凸约束优化问题的求解提供了有效途径,但目前常用优化算法还未能全面满足更为复杂的约束条件或目标分布对寻优方式灵活应变能力的特别需求.首先,本文研究发现,当优化问题在全局最优解的某一较小邻域内,依然分布有复杂的局部极值或可行域分布时,大多数进化算法中不灵活的探索与挖掘方式将会在寻优后期导致误收敛现象发生.其次,为解决这一难题,本文继续对问题特征与算法规则进行了深入探讨,并提出用于解决该类问题的迭代动态多样进化算法(IDDEA).该算法利用多智能体创建一种新型占优评估策略,并以此为基础设计出较优子区域的划分方式.本文所提子区域的划分,在充分发挥动态多样搜索进化方式的探索能力前提下迭代推进,逐步缩小寻优空间,进而使得寻优采样在收敛的同时,依然保持原有探索与挖掘的灵活权衡模式.再次,本文还提出一种最小惩罚函数,为IDDEA引入一种自适应惩罚机制,来动态调整不可行代理的适应度分配,从而有效避免了选择罚系数的难题.最后,IDDEA在若干工程优化设计问题中的成功应用表明,本文在合理的问题分析基础上,提供了更加有效的算法设计思路与成果.  相似文献
6.
邹木春 《计算机应用研究》2011,28(11):4150-4152
提出一种动态分级的并行进化算法用于求解约束优化问题。该算法首先利用佳点集方法初始化种群。在进化过程中,将种群个体分为两个子种群,分别用于全局和局部搜索,并根据不同的搜索阶段动态调整各种级别中并行变量的数目。标准测试问题的实验结果表明了该算法的可行性和有效性。  相似文献
7.
李智勇  黄滔  陈少淼  李仁发 《软件学报》2017,28(6):1529-1546
约束优化进化算法主要研究如何利用进化计算方法求解约束优化问题,是进化计算领城的一个重要研究课题.约束优化问题求解存在约束区域离散、等式约束、非线性约束等挑战,其问题的本质是如何处理可行解与不可行解的关系才能使得算法更高效.本文首先介绍了约束优化问题的定义,然后系统地分析了目前存在的约束优化方法,同时基于约束处理机制将这些方法分为罚函数法、可行性法则、随机排序法、约束处理法、多目标优化法、混合法六类,并从约束处理方法的方面对约束优化进化算法的最新研究进展进行综述.最后,指出约束优化进化算法需进一步研究的方向与关键问题.  相似文献
8.
利用双目标模型求解约束优化问题时,由于它们的最优解集并不相等,因此需要增加特殊机制确保求解双目标问题的算法收敛到原问题的最优解.为克服这一缺点,本文首先将约束优化问题转化为新的双目标优化模型,并证明了新模型的最优解集与原问题的最优解集相等.其次,以简单的差分进化为搜索算法,基于多目标Pareto支配关系的非支配排序为选择准则,提出了求解新模型的差分进化算法.最后,用10个标准测试函数的数值试验说明了新模型及求解算法的有效性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号