首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   3篇
  自动化技术   5篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
基于低秩矩阵恢复和联合学习的图像超分辨率重建   总被引:1,自引:0,他引:1  
文中提出一种新的基于低秩矩阵恢复和联合学习的单帧图像超分辨率重建方法.首先根据相似性将训练样本块分成若干个子集合,使用低秩矩阵恢复方法学习每个子集合的潜在结构.然后使用联合学习方法同时训练出两个投影矩阵,将原始高、低分辨率图像块特征的低秩分量映射到一个统一空间中,最后在该统一空间中完成基于邻域嵌入的图像超分辨率重建.实验结果显示文中方法在数量指标和视觉效果上都优于目前几种典型的图像超分辨率重建方法.  相似文献
2.
针对人脸表情数据的非线性分布特性,提出一种基于非线性联合学习的三维人脸表情合成方法.首先提出非线性联合学习理论,通过无监督回归将具有相同属性的三维人脸映射到相同的低维表达;其次,基于三维人脸的低维表达对低维表达进行重建操作,为给定的三维人脸合成表情,或基于样例表情进行表情的重定向.另外,非线性联合学习方法还能有效地处理带噪声及不完整的人脸数据,获得完整的表情人脸.实验结果表明,文中方法的表情重定向合成结果及合成效率优于已有方法.  相似文献
3.
中文事件触发词抽取是一项具有挑战性的任务.针对中文事件触发词抽取中存在的事件论元语义信息难以获取以及部分贫信息事件实例难以抽取的问题,提出了基于语义的中文事件触发词抽取联合学习模型.首先,根据中文句子结构灵活和句法成分多省略的特点,提出了基于模式匹配的核心论元和辅助论元抽取方法,这两类论元可以较好地表示论元语义,进一步提高中文事件触发词抽取性能;其次,根据同一文档中关联事件实例间存在的高度一致性,构造了一个关联事件语义驱动的中文事件触发词识别和类型分配二维联合模型,用于抽取贫信息事件实例.在ACE 2005中文语料上的实验结果表明:与现有最好的中文事件抽取系统相比,所提出方法的性能得到了明显提升.  相似文献
4.
本文提出一种采用单样本训练的行人重识别方法,在迭代的过程中采用一种渐进学习框架,充分利用有标签数据和无标签数据的特性来优化模型.本文方法主要分为以下3个步骤:(1)训练卷积神经网络来不断优化模型;(2)样本评估:通过本文提出的抽样策略,使用多个模型共同训练,共同挑选出较优的伪标签数据;(3)进行下一轮的训练更新数据.在训练的过程中,我们训练数据由有标签数据、伪标签数据,映射标签数据三部分组成,使用三组数据进行联合学习,每组数据对应使用相应的损失函数对模型进行优化,并且随着迭代的进行,伪标签数据和映射标签数据总是不断更新.在使用单样本训练条件下,rank-1=65.3,mAP=45.6.当训练数据的标注率提升至40%时,rank-1=83.8,mAP=64.9.实验结果表明:本文提出的半监督行人重识别方法可以在使用更少标签数据的情况下,提供与完全监督学习方法相媲美的结果,充分体现了本方法的有效性.  相似文献
5.
实体关系抽取作为信息抽取、自然语言理解、信息检索等领域的核心任务和重要环节,能够从文本中抽取实体对间的语义关系.近年来,深度学习在联合学习、远程监督等方面上的应用,使关系抽取任务取得了较为丰富的研究成果.目前,基于深度学习的实体关系抽取技术,在特征提取的深度和模型的精确度上已经逐渐超过了传统基于特征和核函数的方法.围绕有监督和远程监督两个领域,系统总结了近几年来中外学者基于深度学习的实体关系抽取研究进展,并对未来可能的研究方向进行了探讨和展望.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号