首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  国内免费   6篇
  完全免费   29篇
  自动化技术   83篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   10篇
  2009年   11篇
  2008年   10篇
  2007年   18篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
1.
快速模糊C均值聚类彩色图像分割方法   总被引:34,自引:3,他引:31  
模糊C均值(FCM)聚类用于彩色图像分割具有简单直观、易于实现的特点,但存在聚类性能受中心点初始化影响且计算量大等问题,为此,提出了一种快速模糊聚类方法(FFCM)。这种方法利用分层减法聚类把图像数据分成一定数量的色彩相近的子集,一方面,子集中心用于初始化聚类中心点;另一方面,利用子集中心点和分布密度进行模糊聚类,由于聚类样本数量显著减少以及分层减法聚类计算量小,故可以大幅提高模糊C均值算法的计算速度,进而可以利用聚类有效性分析指标快速确定聚类数目。实验表明,这种方法不需事先确定聚类数目并且在优化聚类性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现彩色图像的快速分割。  相似文献
2.
基于层次划分的最佳聚类数确定方法   总被引:19,自引:0,他引:19       下载免费PDF全文
确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clusteringfeature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独立于具体的聚类算法,能够识别噪声和复杂形状的簇.在实际数据和合成数据上的实验结果表明,新方法的性能优于新近提出的其他指标,同时大幅度提高了计算效率.  相似文献
3.
基于属性权重的Fuzzy C Mean算法   总被引:14,自引:0,他引:14  
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(ω),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(ω)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.  相似文献
4.
方向相似性聚类方法DSCM   总被引:12,自引:2,他引:10  
针对方向性数据提出了一种鲁棒的基于方向相似性度量的聚类方法DSCM.DSCM首先基于方向性度量构造目标函数,然后通过不动点迭代法对目标函数优化,获得各个样本的最终稳定状态,最后基于样本的最终状态集利用层次聚类技术实现聚类.DSCM的优势在于对方向性数据聚类时不依赖于具体的初始化参数,且能自组织地求解最优聚类划分因而有很好的鲁棒性.通过实验证实了DSCM的有效性以及对已有的两个传统方向性聚类算法的优越性.  相似文献
5.
核模糊C均值算法的聚类有效性研究   总被引:10,自引:0,他引:10       下载免费PDF全文
针对核模糊C均值聚类(Kemelized Fuzzy C-Means,KFCM)算法的有效性评价,以核非线性映射为工具,将原空间中的六个著名有效性指标推广到高维特征空间,得到其对应的核化形式,并通过数值比较实验考察这些核化指标的性能及其对高斯核宽度β和模糊指数m的敏感特性。结果表明,在所考察的指标中,著名的Xie-Beni指标VXB及其改进指标VK的核化版本具有最好的性能和可靠性,可优先作为KFCM聚类算法的有效性准则。  相似文献
6.
模糊C-均值(FCM)聚类算法的实现   总被引:10,自引:0,他引:10  
传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇.然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起.给出的聚类算法是在传统FCM算法的循环之后添加了去除掉空簇的步骤,解决了上述很难将非常接近的类聚到一个簇中的问题.另外,为便于选出最优结果,在递归之后又添加了计算聚类有效性的步骤.最后用Java实现了该算法并在数据集上进行了实验,证实了改进方法的有效性.  相似文献
7.
基于FCM的无监督纹理分割   总被引:8,自引:0,他引:8  
由于图像所包含的纹理类别数目常常是未知的,因此无监督的纹理分类相比于有监督的纹理分类更具有实际的应用价值.从聚类的本质定义出发,采用了一种基于类内、类间距离比值的聚类有效性判别函数RII.为了减弱随着聚类数目的递增对判别函数带来的影响,分别采用最大类内距和最小类间距替代类内、类间距离之和作为判别因子.由于FCM的收敛速度与初始类别数目有一定的相关性,再引入收敛速度作为聚类有效性函数的惩罚因子,给出了一个新的判别函数nRII,有效地预防过分类现象,准确地评价了聚类结果.  相似文献
8.
模糊聚类中判别聚类有效性的新指标   总被引:7,自引:0,他引:7       下载免费PDF全文
本文提出了一个在模糊聚类中判别聚类有效性的新指标。该指标可有效地对类问有交叠或有多孤立点的情况做出准确的判定。文中基于模糊C-均值聚类算法(FCM),应用多组的测试数据对其进行了性能分析,并与当前较广泛使用且较具代表性的某些相关指标进行了深入的比较。实验结果表明,该指标函数的判定性能是优越的,它可以自动地确定聚类的最佳个数。  相似文献
9.
K-means算法最佳聚类数确定方法   总被引:7,自引:0,他引:7  
K-means聚类算法是以确定的类数k为前提对数据集进行聚类的,通常聚类数事先无法确定.从样本几何结构的角度设计了一种新的聚类有效性指标,在此基础上提出了一种新的确定K-means算法最佳聚类数的方法.理论研究和实验结果验证了以上算法方案的有效性和良好性能.  相似文献
10.
一种自动抽取图像中可判别区域的新方法   总被引:6,自引:0,他引:6  
图像分割是图像处理中的一个难题,为了自动抽取图像中的可差别区域,提出了一种基于自组织图归约算法的区域抽取新方法,首先,利用包括颜色、纹理以及位置在内的多模特征抽算法,原始图像被转换成特征,接着,通过自组织映射学习算法,特征图映射成自组织图,然后,对自组织图实施归纳算法得到一族约简的自组织图谱系;最后,利用一个 综合的聚类有效性分析指标从约简的自组织图谱系中得到一个最优约简的自组织图,以此实现图像区域的分割,新方法的有效性通过两个评价实验得到了验证。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号