首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  国内免费   6篇
  完全免费   38篇
  自动化技术   122篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   13篇
  2014年   9篇
  2013年   14篇
  2012年   12篇
  2011年   14篇
  2010年   13篇
  2009年   8篇
  2008年   14篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
排序方式: 共有122条查询结果,搜索用时 31 毫秒
1.
监控视频运动目标检测减背景技术的研究现状和展望   总被引:49,自引:1,他引:48  
在很多计算机视觉应用中,一个基础而关键的任务是从视频序列中确定运动目标,其中对于固定摄像机的监控视频运动目标的检测,最常用的方法是减背景技术。其思想是将视频帧与一个背景模型做比较,其中区别较大的像素区域被认为是运动目标。但由于构建背景模型需要考虑光照变化等很多因素,因此开发一个好的减背景算法面临很多挑战。为了使人们对该技术有个初步了解,该文首先对利用减背景技术实现运动目标检测的过程、目前各种典型背景建模算法的原理和优缺点做了较为详细的阐述和归纳,然后总结了各种减背景算法的总体特点,并结合实验和文献资料对部分算法进行了对比评价,最后指出了减背景技术的未来研究重点和发展方向。  相似文献
2.
混合高斯模型和帧间差分相融合的自适应背景模型   总被引:11,自引:2,他引:9  
提出了运动目标检测中背景动态建模的一种方法。该方法是在Stauffer等人提出的自适应混合高斯背景模型基础上,为每个像素构建混合高斯背景模型,通过融入帧间差分把每帧中的图像区分为背景区域、背景显露区域和运动物体区域。相对于背景区域,背景显露区中的像素点将以大的更新率更新背景模型,使得长时间停滞物体由背景变成运动前景时,被遮挡的背景显露区被快速恢复。与Stauffer等人提出的方法不同的是,物体运动区不再构建新的高斯分布加入到混合高斯分布模型中,减弱了慢速运动物体对背景的影响。实验结果表明,在有诸多不确定性因素的序列视频中构建的背景有较好的自适应性,能迅速响应实际场景的变化。  相似文献
3.
基于模型切换的自适应背景建模方法   总被引:10,自引:0,他引:10       下载免费PDF全文
提出了一种基于模型切换的背景建模方法 (MSBM). 该方法以熵图像为纽带, 实现了不同精细程度的背景模型在空间上的自适应选取和在时间上的自适应切换. 对于亮度分布复杂度高的背景区域采用精细的模型以保证运动目标检测的精度, 反之采用简单的模型以降低计算量. 通过模型结构自适应结合参数自适应, 很好地兼顾了检测精度和计算代价. 基于高斯混合模型和时间平均模型的双模型切换式运动目标检测算法被用于实验研究, 结果表明这种算法的检测效果和单独采用高斯混合模型的检测效果相当, 而计算速度却比后者提高很多.  相似文献
4.
复杂背景下人体骨架的提取   总被引:8,自引:5,他引:3  
在计算机视觉领域,人体运动分析的研究具有广泛的应用前景。由于人体运动的复杂性,已有的研究方法对人体和背景加上了许多限制条件。本文提出了一种新的方法在复杂背景下来获得人体的骨架。  相似文献
5.
利用区域变形和背景更新实现运动对象跟踪   总被引:5,自引:2,他引:3  
从时域统计的角度出发,提出了一种结合自适应混合背景更新模型的区域变形跟踪算法.该算法以模型更新得到的前景/背景二值分割掩膜作为区域特征,将跟踪问题抽象为一个水平集(Level Set)偏微分方程的数值求解问题,并分析了算法的自适应性.为了进一步提高算法的实现效率,引入了窄带跟踪方案.实验表明,该算法可以对视频序列中的指定运动对象进行快速精确的跟踪。  相似文献
6.
双模型背景建模与目标检测研究   总被引:3,自引:0,他引:3  
基于像素的背景建模方法速度较快但不能很好地描述背景运动,光流能准确描述物体运动但计算量大,难以满足实时的要求.提出一种结合基于像素的背景建模方法速度快以及光流描述物体运动准确优点的背景建模和目标检测方法.具体来说,为静止背景建立传统基于像素的灰度背景模型,为运动背景建立光流背景模型,通过2种背景模型的有效结合快速准确地实现目标检测.实验结果表明,提出的方法建模速度与基于像素背景建模方法相当,同时,又有光流准确描述背景运动的优点,综合性能超越上述2种方法.  相似文献
7.
融合光流速度与背景建模的目标检测方法   总被引:3,自引:1,他引:2  
为了克服传统基于像素的背景建模方法不能很好地描述背景运动的问题,提出了一种融合光流速度与背景建模的目标检测方法。结合像素的灰度信息、空间信息和时间信息计算出每个像素的光流速度,利用光流速度在时间域上的统计信息为背景建立光流速度场模型。利用建立的背景模型快速、准确地实现运动目标的检测。实验结果表明,融合光流速度的背景建模方法能有效地描述背景的运动,显著降低运动背景产生的噪音,鲁棒地实现运动目标检测。  相似文献
8.
一种基于多层背景模型的前景检测算法   总被引:3,自引:0,他引:3  
动态场景中的前景检测是后继处理的基础和制约整个智能视频监控系统稳定性、可靠性的关键。为了在保证运动目标检测的基础上,进一步检测出前景中的静止目标并消除"鬼影(Ghost)",提出了一种基于多层背景模型的前景检测算法。该算法将背景分为参考背景和动态背景两层,分别采用单高斯和混合高斯模型进行背景建模。在线检测时,采用动态背景提取变化前景,用动态背景与参考背景之间高斯分布的差异提取静止前景,同时,通过逐层分析,比较输入像素与两层背景模型分布的相互关系,快速消除Ghost,降低虚警。实验结果表明,多层背景模型具有良好的检测性能和实时性,为后继跟踪、分类等处理提供了坚实的基础。目前,以该算法为核心构建了一个实时目标检测、跟踪系统,对图像大小为320×240的视频序列的平均处理速度达到15帧/s。  相似文献
9.
一种新的基于统计的背景减除方法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种有效的彩色视频背景减除的新方法。首先对彩色视频采样得到图像序列,统计序列中各像素的RGB值并归类,用出现概率最高类的RGB均值来构建背景模型;然后根据颜色差异和亮度范围综合条件,结合形态学处理进行背景减除。实验结果表明,此法可以很好地克服灰度视频背景减除中很难识别与背景灰度相近目标的缺陷,同时比传统的彩色视频背景建模快速,且样本中允许运动目标存在。对背景减除的准确性和实时性有一定程度地改进。该文还针对光照和背景变化提出了一些有效的背景更新策略。  相似文献
10.
混合高斯模型运动检测算法优化   总被引:2,自引:1,他引:1       下载免费PDF全文
针对经典混合高斯算法对非平稳场景过于敏感的问题, 提出了混合高斯模型运动检测算法的优化方法。在检测算法流程的匹配高斯模态选择、模型更新和背景显示上分别作了优化:综合考虑模态权重与模态自身匹配度, 选择匹配高斯模态; 统一初始化与检测过程中的模型更新, 即使视频检测的背景变化较大, 系统也能较快地建立理想背景模型; 综合考虑背景模型各模态分布, 清楚反映了背景模型的具体分布。实验结果表明, 与经典混合高斯算法相比, 优化算法在克服背景扰动、降低误检率上表现良好, 有效提高了混合高斯算法对场景变化的适应性。优化算法在实际工程应用中效果良好。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号