首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  国内免费   17篇
  完全免费   30篇
  自动化技术   113篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   13篇
  2014年   9篇
  2013年   14篇
  2012年   12篇
  2011年   13篇
  2010年   13篇
  2009年   8篇
  2008年   14篇
  2006年   2篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
1.
混合高斯模型的自适应前景提取   总被引:2,自引:2,他引:0       下载免费PDF全文
复杂场景下的运动前景提取是计算机视觉研究领域的研究重点。为解决复杂场景中的前景目标提取问题,本文提出一种应用于复杂变化场景中的基于混合高斯模型的自适应前景提取方法。本方法可以对视频帧中每个像素的高斯分布数进行动态控制,并且通过在线EM算法对高斯分布的各参数进行学习,此外每个像素的权值更新速率可根据策略进行调整。实验结果表明本方法对复杂变化场景具有较好的适应性,可有效、快速地提取前景目标,提取结果具有较好的查准率和查全率。  相似文献
2.
混合高斯模型和帧间差分相融合的自适应背景模型   总被引:2,自引:2,他引:10       下载免费PDF全文
提出了运动目标检测中背景动态建模的一种方法。该方法是在Stauffer等人提出的自适应混合高斯背景模型基础上,为每个像素构建混合高斯背景模型,通过融入帧间差分把每帧中的图像区分为背景区域、背景显露区域和运动物体区域。相对于背景区域,背景显露区中的像素点将以大的更新率更新背景模型,使得长时间停滞物体由背景变成运动前景时,被遮挡的背景显露区被快速恢复。与Stauffer等人提出的方法不同的是,物体运动区不再构建新的高斯分布加入到混合高斯分布模型中,减弱了慢速运动物体对背景的影响。实验结果表明,在有诸多不确定性因素的序列视频中构建的背景有较好的自适应性,能迅速响应实际场景的变化。  相似文献
3.
基于记忆机制的视觉信息处理认知建模   总被引:2,自引:0,他引:2  
受人类认知环境方式的启发,将人类记忆机制引入到视觉信息处理过程,提出一种基于记忆机制的视觉信息处理认知模型,用于模拟人脑的一些认知过程.该模型主要包括5个部分:信息粒、记忆空间、认知行为、信息传递规则和决策过程.根据人脑三阶段记忆模型定义3个记忆空间:瞬时记忆空间、短时记忆空间和长时记忆空间,分别用于存储当前的、临时的和永久的视觉信息.该模型可记住或遗忘曾经出现过的场景,从而使其能快速适应场景变化.将其应用于计算机视觉研究中的两个关键问题:背景建模与运动目标跟踪.实验结果表明,该模型能较好解决复杂场景下背景或目标姿态突变以及目标被严重遮挡等问题.  相似文献
4.
融合光流速度与背景建模的目标检测方法   总被引:1,自引:1,他引:2       下载免费PDF全文
为了克服传统基于像素的背景建模方法不能很好地描述背景运动的问题,提出了一种融合光流速度与背景建模的目标检测方法。结合像素的灰度信息、空间信息和时间信息计算出每个像素的光流速度,利用光流速度在时间域上的统计信息为背景建立光流速度场模型。利用建立的背景模型快速、准确地实现运动目标的检测。实验结果表明,融合光流速度的背景建模方法能有效地描述背景的运动,显著降低运动背景产生的噪音,鲁棒地实现运动目标检测。  相似文献
5.
交通场景中车辆的运动检测与阴影消除   总被引:1,自引:1,他引:0       下载免费PDF全文
提出一种算法框架实现对交通场景中运动车辆的分割。首先,提出一种基于颜色空间的浮动气球模型,用以解决监控场景的自适应背景建模问题,该方法解决了基于参数模型的背景建模方法无法检测驻留物体的问题,并可有效适应监控场景中的光照变化以实现自适应更新;其次,针对通过背景建模和背景差分得到的运动前景区域包含运动车辆阴影问题,提出一种新的阴影检测算法,该算法采用多特征融合的方法实现了对运动车辆的分割。实验结果分析表明,与其他方法相比,该算法框架在背景建模和阴影检测方法具有较好的效果。  相似文献
6.
混合高斯模型运动检测算法优化   总被引:1,自引:1,他引:1  
针对经典混合高斯算法对非平稳场景过于敏感的问题, 提出了混合高斯模型运动检测算法的优化方法。在检测算法流程的匹配高斯模态选择、模型更新和背景显示上分别作了优化:综合考虑模态权重与模态自身匹配度, 选择匹配高斯模态; 统一初始化与检测过程中的模型更新, 即使视频检测的背景变化较大, 系统也能较快地建立理想背景模型; 综合考虑背景模型各模态分布, 清楚反映了背景模型的具体分布。实验结果表明, 与经典混合高斯算法相比, 优化算法在克服背景扰动、降低误检率上表现良好, 有效提高了混合高斯算法对场景变化的适应性。优化算法在实际工程应用中效果良好。  相似文献
7.
视觉监视中基于柯西分布的统计变化检测   总被引:1,自引:1,他引:1       下载免费PDF全文
为了更好地进行视觉监视,该文给出了一种新的基于柯西分布的光照不变的统计变化检测算法。该算法首先将两帧图像间的灰度比值作为背景建模和剔除的特征,并且在假定背景图像中,当每个像素点观测的时序灰度变化由白噪声引起时,两帧背景图像中对应像素间的灰度比值的分布符合柯西分布;然后基于该变化检测方法,将YCbCr颜色空间的亮度、色调和饱和度用来识别和消除视频序列图像中的阴影。实验结果表明,该新算法不仅可以承受整体或局部的、缓慢或突然的光线变化,并且可以滤除由场景背景中小的扰动而导致的噪声。  相似文献
8.
一种联合图像分割与背景建模的运动目标检测算法   总被引:1,自引:1,他引:0  
介绍了在混合高斯模型的基础上,采用每一个像素点及其邻域组成的集合作为特征矢量来描述图像,对YUV格式的彩色图像的不同颜色分量分别建立混合高斯模型,从而确定是否有变化发生.为充分利用空间信息,提出将彩色图像分割与背景建模结合起来,得到具有精确边缘的运动目标.实验结果表明,即使在前景纹理、颜色比较一致且与背景对比不是很明显的情况下,本方法也能完整地检测出运动前景.  相似文献
9.
监控视频运动目标检测减背景技术的研究现状和展望   总被引:1,自引:1,他引:54       下载免费PDF全文
在很多计算机视觉应用中,一个基础而关键的任务是从视频序列中确定运动目标,其中对于固定摄像机的监控视频运动目标的检测,最常用的方法是减背景技术。其思想是将视频帧与一个背景模型做比较,其中区别较大的像素区域被认为是运动目标。但由于构建背景模型需要考虑光照变化等很多因素,因此开发一个好的减背景算法面临很多挑战。为了使人们对该技术有个初步了解,该文首先对利用减背景技术实现运动目标检测的过程、目前各种典型背景建模算法的原理和优缺点做了较为详细的阐述和归纳,然后总结了各种减背景算法的总体特点,并结合实验和文献资料对部分算法进行了对比评价,最后指出了减背景技术的未来研究重点和发展方向。  相似文献
10.
一种适应户外光照变化的背景建模及目标检测方法   总被引:1,自引:1,他引:2       下载免费PDF全文
针对户外视频监控存在光照变化这一问题, 提出一个用于准确完成目标检测的实时背景建模框架. 考虑到目标检测的准确性要求, 建立基于帧间像素亮度差统计直方图的像素亮度扰动阈值. 在此基础上, 针对背景建模的实时性要求, 提出一种基于自回归背景模型的参数快速更新方法. 鉴于不同光照变化的适应性要求, 定义对光照变化不敏感的背景纹理模型. 上述模型统称为自回归--纹理 (Auto regression and texture, ART) 模型, 该模型适应于户外光照变化. 基于该模型构建像素亮度和纹理置信区间用于目标检测. 实验结果表明, 该框架能适应和实时跟踪户外背景的光照变化, 并对目标进行准确检测.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号