首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  国内免费   35篇
  完全免费   54篇
  自动化技术   192篇
  2022年   55篇
  2021年   77篇
  2020年   13篇
  2019年   24篇
  2018年   7篇
  2017年   11篇
  2016年   3篇
  2015年   2篇
排序方式: 共有192条查询结果,搜索用时 38 毫秒
1.
基于监督学习深度自编码器的图像重构   总被引:1,自引:0,他引:1       下载免费PDF全文
张赛  芮挺  任桐炜  杨成松  邹军华 《计算机科学》2018,45(11):267-271, 297
针对数字图像受损信息的重构问题,提出一种将经典无监督学习自编码器(Auto-Encoder,AE)用于监督学习的新方法,并对深度模型结构与训练策略进行了研究。通过设计多组监督学习单层AE模型,提出了逐组“递进学习”和“关联编码”的学习策略,构建了一个新的基于监督学习的深度AE模型结构;对于新模型结构,采用多对一(一个输入样本的多种形式对应一个输出)的训练方法代替经典AE中一对一(一个输入样本对应一个输出)的训练方法。将该模型的结构和训练策略用于部分数据受损或遮挡的图像中进行数据重构测试,提高了模型对受损数据特征编码的表达能力和重构能力。实验结果表明,提出的新方法对于受损及遮挡样本的图像具有良好的重构效果和适应性。  相似文献
2.
针对传统人脸表情识别算法鲁棒性差,易受到人脸身份信息干扰的问题,本文在基于降噪自编码器的基础上,提出一种人脸表情识别算法。首先,从图片中检测出人脸部分,并进行尺度归一化处理;再构造堆栈式降噪自编码神经网络模型进行预训练;最后为了避免由训练样本不足容易造成的过拟合问题,在深度网络模型的全连接层采用了Dropout技术。实验结果在数据集CK 、JAFFE和Yale上均取得了较高的准确率,说明了该方法具有较强的鲁棒性和抗身份信息干扰的能力。  相似文献
3.
鉴于传统的协同过滤推荐算法在处理冷启动和数据较稀疏的问题上表现不佳,提出一种将堆栈降噪自编码器(Stacked Denoising AutoEncodes,简称SDAE)同最近邻推荐方法相结合的混合SDAE推荐模型。该模型结合稀疏编码算法和降噪准则,使用逐层自编码的思想将极限学习机与降噪自编码器堆叠形成基于极限学习机(Extreme Learning Machine,简称ELM)计算的堆栈降噪自编码器的深度学习模型,最终用模型提取的抽象特征应用于最近邻算法预测打分。并通过多组数据集上各种模型的实验结果表明,在稀疏度低于8%时,与余弦相似度模型和皮尔森相似度模型相比,混合SDAE推荐模型实验效果分别提高了11.3%和21.1%,与潜在矩阵分解模型相比,混合SDAE模型收敛所需的迭代次数少近30%,而在与相似度模型和矩阵分解模型的三组比较实验中,混合SDAE模型的稳定性也表现最良好,所提出的混合SDAE模型收敛速度较快,并有效解决数据稀疏与冷启动的问题  相似文献
4.
针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA对项目属性降维并计算属性相似性,结合隐性编码计算的相似性作为最终结果,根据最终的项目相似性产生TOP-N推荐列表。Movielens数据集的实验表明,新算法能够有效提升推荐结果的召回率,一定程度上解决了评分矩阵稀疏和项目之间没有共同用户评分就不能计算相似性的问题。  相似文献
5.
针对复杂场景的极化合成孔径雷达(Synthetic aperture radar,SAR)图像,堆叠自编码模型能够自动学习高层特性,有效表示城区、森林等复杂地物的结构,然而,却难以保持图像的边界和细节.为了克服该缺点,本文结合深度自编码器和极化层次语义模型(Polarimetric hierarchical semantic model,PHSM),提出了新的无监督的极化SAR图像分类算法.该方法根据极化层次语义模型,将复杂的极化SAR图像划分为聚集、匀质和结构三大区域.对聚集区域,采用堆叠自编码模型进行高层特征表示,并构造字典得到稀疏特征进行分类;对匀质区域,采用层次模型进行分类;对于结构区域,进行线目标保留和边界定位.实验结果表明,该算法通过不同的分类策略优势互补,能够得到区域一致性好且边界保持的分类结果.  相似文献
6.
在实际应用场景中越来越多的数据具有多标签的特性,且特征维度较高,包含大量冗余信息.为提高多标签数据挖掘的效率,多标签特征提取已经成为当前研究的热点.本文采用去噪自编码器获取多标签数据特征空间的鲁棒表达,在此基础上结合超图学习理论,融合多个标签对样本间几何关系的影响以提升特征提取的性能,构建多标签数据样本间几何关系所对应超图的Laplacian矩阵,并通过Laplacian矩阵的特征值分解得到低维投影空间.实验结果证明了本文所提出的算法在分类性能上是有效可行的.  相似文献
7.
雷倩  郝存明  张伟平 《计算机科学》2018,45(Z6):230-233
车型识别在视频监控系统中起着关键作用,文中利用深度神经网络和超分辨率来实现交通监控中的车型识别。利用深度卷积神经网络CaffeNet,并采用先进的深度学习框架CAFFE和具有强大计算能力的GPU来完成对车辆的车型识别。在图像预处理阶段,采用一种基于深度学习和稀疏表示的图像超分辨率(SR)重构算法,来增强图像的细节信息。其中首先基于深度学习模型自编码器,提出一种改进模型非负稀疏去噪自编码器(Nonnegative Sparse Denoising Auto-Encoders,NSDAE)来实现字典的联合学习,然后基于稀疏表示实现车辆图像的超分辨率重构。经实验验证,在加入超分辨率处理之后,车型识别效果在精确度上得到了明显的提升。  相似文献
8.
张志禹  刘思媛 《计算机科学》2018,45(10):267-271, 305
相比于传统的降维算法,深度学习中的栈式自编码器(Stacked Autoencoder,SAE)能够有效地学习特征并实现高效降维,然而对输入特征极其敏感。第二代离散曲波变换(Discrete Curvelet Transform,DCT)能够提取出人脸的各向信息(包含边缘和概貌特征),确保SAE的输入特征充分,从而弥补了其不足。因此,提出了一种基于Curv-SAE特征融合的人脸识别降维算法,即对人脸图像进行DCT得到特征脸并将其作为SAE的输入特征进行训练,特征融合后将其输入到分类器中进行识别。在ORL和FERET人脸数据库上的实验表明,与小波变换相比,曲波的特征信息更丰富;与传统的降维算法相比,SAE的特征表达更充分且识别精度更高。  相似文献
9.
蒋宗礼  王一大 《计算机科学》2017,44(12):227-231
基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含噪声和稀疏性对特征抽取的影响。使用COAE评测数据集进行的情感分析实验表明所提模型分类的准确率和召回率都有所提高。  相似文献
10.
近年来,深度学习框架和非监督学习方法越来越流行,吸引了很多机器学习和人工智能领域研究者的兴趣。从深度学习中的“构造模块”入手,主要研究自编码器的表达能力,尤其是自编码器在数据降维方面的能力及其表达能力的稳定性。从深度学习的基础方法入手,旨在更好地理解深度学习。第一,自编码器和限制玻尔兹曼机是深度学习方法中的两种“构造模块”,它们都可用作表达转换的途径,也可看作相对较新的非线性降维方法。第二,重点探究了对于视觉特征的理解,自编码器是否是一个好的表达转换途径。主要评估了单层自编码器的表达能力,并与传统方法PCA进行比较。基于原始像素和局部描述子的实验验证了自编码器的降维作用、自编码器表达能力的稳定性以及提出的基于自编码器的转换策略的有效性。最后,讨论了下一步的研究方向。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号