首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  国内免费   68篇
  完全免费   56篇
  自动化技术   297篇
  2018年   1篇
  2017年   6篇
  2016年   4篇
  2015年   22篇
  2014年   27篇
  2013年   25篇
  2012年   49篇
  2011年   42篇
  2010年   41篇
  2009年   42篇
  2008年   25篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有297条查询结果,搜索用时 31 毫秒
1.
蚁群优化算法及其应用研究进展   总被引:5,自引:5,他引:17  
李士勇 《计算机测量与控制》2003,11(12):911-913,917
综述了近年来蚁群算法及其在组合优化中的应用研究成果。首先简述了蚁群的觅食行为及蚂蚁的信息系统,其次介绍了人工蚁群算法的基本原理及其主要特点。然后概述了这种算法在组合优化问题中的多种应用,诸如旅行商问题(TSP)、二次分配问题(QAP)、任务调度问题(JSP)、车辆路线问题(VRP)、图着色问题(GCP)、有序排列问题(SOP)及网络由问题等。最后对蚁群算法仍需要解决的问题和未来的发展方向进行了探讨。  相似文献
2.
复杂环境下基于蚁群优化算法的机器人路径规划   总被引:4,自引:4,他引:30  
樊晓平  罗熊  易晟  张航 《控制与决策》2004,19(2):166-170
针对复杂环境下机器人的路径规划问题,将蚁群优化算法引入这一新的应用领域,设计了相应的算法,解决了以前尚未涉足的带约束条件的连续函数优化问题.仿真结果验证了所设计算法的实用性和有效性.  相似文献
3.
PSO优化算法演变及其融合策略   总被引:3,自引:3,他引:2  
分析了粒子群优化算法公式的演变以及相关参数,包括基本算法、加惯性权重的PSO以及加收缩因子的PSO。并对它与其它智能算法(模拟退火、遗传算法、蚁群算法等)的融合进行了探讨,指出目前PSO的数学研究范畴仅限于收敛性的研究。  相似文献
4.
基于蚁群优化算法的旋转货架拣选路径规划   总被引:2,自引:2,他引:1       下载免费PDF全文
王罡  冯艳君 《计算机工程》2010,36(3):221-223
给出自动化立体仓库单拣选台分层水平旋转货架系统的数学模型,提出一种改进的蚁群优化算法,用于解决货物拣选路径规划问题。该算法能快速找到最优货物拣选路径,得到的解质量较高且计算时间短。仿真结果表明,该方法适用于求解中小规模货物拣选路径的规划问题,可以提高自动存储作业效率。  相似文献
5.
基于改进蚁群算法的网络负载均衡路由优化   总被引:2,自引:2,他引:3       下载免费PDF全文
最短路径优先的路由控制策略在解决突发业务模式下的拥塞问题上存在不足,针对该问题,采用随机选择尺度因子实现负载均衡,增加路由器向所有相邻路由器转发分组的机会。设计路由算法模拟器,完成改进蚁群网络路由优化算法在4种典型网络上的仿真。以CHINANET为例的对比实验表明,在重负载情况下,改进的蚁群网络路由优化算法能获得较高的吞吐量、较低的平均时延与丢包率。  相似文献
6.
动态传感器网络移动代理路由算法   总被引:2,自引:2,他引:4  
提出一种基于蚁群优化的动态传感器网络移动代理能量有效路由算法.该算法设计了一种新的路径选择概率模型,使移动代理能找到一条从处理节点到目标节点之间的能量有效路径,该路径兼顾了路径能量消耗和节点剩余能量情况;该算法还制定了新的蚁群局部信息素再初始化规则,该规则在网络中发生动态变化的节点附近进行局部信息素再初始化,快速有效地更新最优路径.与其他算法相比,该算法能找到一条能量消耗较小,并且节点剩余能量较多的有效路径.  相似文献
7.
基于群智能的连续优化算法研究   总被引:1,自引:1,他引:0  
在对蚁群优化算法(ACO)和粒子群优化算法(PSO)进行分析的基础上,提出一种解决函数连续优化的群智能混合策略-CA-PSO.在求解过程中,首先对解空间进行区域划分,进而利用ACO在优化初期具备的快速收敛性能,在整个解空间内搜索最优解的敏感区域.然后利用蚁群的搜索结果初始化PSO粒子,利用PSO快速和全局收敛性进行所在小区域内的搜索.种群更新时根据蚁群的拓扑结构和小区域间的阶跃规则,蚁群不断向最优解敏感区域聚集,使得敏感区域内粒子数增加,则局部的PSO搜索策略可以更细密的搜索最优.实例结果表明,CA-PSO既能保证解的分布性与多样性,又避免了在多峰值函数寻优过程中陷入局部最优解而停止运算,最终将收敛到全局最优解.  相似文献
8.
ACO—BP在神经网络训练中的研究与应用   总被引:1,自引:1,他引:0  
王鸽  蒲蓬勃 《计算机仿真》2009,26(12):136-140
针对神经网络收敛速度慢、易于陷入局部最优等问题,可将蚁群算法与人工神经网络相融合的方法来解决,但容易出现训练时间与训练精度、泛化能力之间的矛盾.为解决上述矛盾,提出将蚁群优化算法与反向传播算法相融合共同完成神经网络训练的方法.算法首先采用蚁群优化算法对网络权值进行整体寻优,克服反向传播算法容易陷入局部最优的不足再以找到的较优的权值为初值,采用反向传播算法做进一步的寻优,克服单一训练网络时间较长、精度不高的缺点.最后对ACO-BP与反向传播算法进行了比较,给出两种算法在不同隐结点数目下的检验误差值和两种网络在矿选指标中的应用效果.通过对实验结果的分析.表明ACO-BP算法要优于反向传播算法.  相似文献
9.
基于ACO-SVM的质谱数据分析   总被引:1,自引:1,他引:0       下载免费PDF全文
张蓉  冯斌 《计算机工程》2010,36(4):158-160
生物信息学应用领域存在高维小样本和内部空间疏散的特性,因而数据分析面临着巨大的挑战。基于此,在蚁群算法的搜索过程中将特征的信噪比作为先验信息,结合支撑向量用于筛选血清蛋白相关生物标记物,实验结果表明,该方法建立的癌症诊断模型取得了较好的分类性能测试仿真结果,敏感度和特异度分别达到94%和92.4%。  相似文献
10.
一种求解异构DAG调度问题的置换蚁群   总被引:1,自引:1,他引:0  
邓蓉  陈闳中  王博  王小明  李灿 《计算机科学》2010,37(12):193-196
减少分布式程序的执行时间,是网格调度系统需要解决的重要问题。因分布式程序常建模为DAG图,故该问题又称异构DAG调度问题。提出的置换调度蚁群PSACS(Permutation Scheduling Ant Colony System)将DAG调度方案表示为任务置换列表,使用标准蚁群搜索技术探索解空间。实验表明,该算法明显优于遗传算法和粒子群算法,能够一次求出大部分(65%)同构DAG调度问题的最优解并获得非常好的异构DAG调度方案。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号