首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  国内免费   24篇
  完全免费   126篇
  自动化技术   335篇
  2018年   1篇
  2017年   6篇
  2016年   4篇
  2015年   22篇
  2014年   27篇
  2013年   25篇
  2012年   49篇
  2011年   42篇
  2010年   41篇
  2009年   42篇
  2008年   25篇
  2007年   18篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   1篇
排序方式: 共有335条查询结果,搜索用时 31 毫秒
1.
基于变异和动态信息素更新的蚁群优化算法   总被引:63,自引:0,他引:63       下载免费PDF全文
朱庆保  杨志军 《软件学报》2004,15(2):185-192
尽管蚁群优化算法在优化计算中已得到了很多应用,但在进行大规模优化时,其收敛时间过长仍是应用该算法的一个瓶颈.为此,提出了一种高速收敛算法.该算法采用一种新颖的动态信息素更新策略,以保证在每次搜索中,每只蚂蚁都对搜索做出贡献;同时,还采取了一种独特的变异策略,以对每次搜索的结果进行优化.计算机实验结果表明,该算法与最新的改进蚁群优化算法相比,其收敛速度提高了数十倍乃至数百倍以上.  相似文献
2.
复杂环境下基于蚁群优化算法的机器人路径规划   总被引:29,自引:4,他引:25  
樊晓平  罗熊  易晟  张航 《控制与决策》2004,19(2):166-170
针对复杂环境下机器人的路径规划问题,将蚁群优化算法引入这一新的应用领域,设计了相应的算法,解决了以前尚未涉足的带约束条件的连续函数优化问题.仿真结果验证了所设计算法的实用性和有效性.  相似文献
3.
蚁群优化算法及其应用研究进展   总被引:19,自引:5,他引:14  
李士勇 《计算机测量与控制》2003,11(12):911-913,917
综述了近年来蚁群算法及其在组合优化中的应用研究成果。首先简述了蚁群的觅食行为及蚂蚁的信息系统,其次介绍了人工蚁群算法的基本原理及其主要特点。然后概述了这种算法在组合优化问题中的多种应用,诸如旅行商问题(TSP)、二次分配问题(QAP)、任务调度问题(JSP)、车辆路线问题(VRP)、图着色问题(GCP)、有序排列问题(SOP)及网络由问题等。最后对蚁群算法仍需要解决的问题和未来的发展方向进行了探讨。  相似文献
4.
蚁群优化算法及其应用   总被引:17,自引:2,他引:15  
蚂蚁算法是由意大利学者M.Dorigo等人提出的一种新型的模拟进化算法。该算法首先应用于旅行商问题并获得了极大的成功,其后,又被用于求解指派问题、Job—shop调度问题、图着色问题和网络路由问题等。实践证明,蚂蚁算法是一种鲁棒性强、收敛性好、实用性广的优化算法,但同时也存在一些不足,如收敛速度慢和容易出现停滞现象等。  相似文献
5.
蚁群优化算法的研究现状及研究展望   总被引:17,自引:0,他引:17  
张航  罗熊 《信息与控制》2004,33(3):318-324
本文首先简要地介绍蚁群优化算法的来源、对应的生物原理和算法实现的框架.然后详细地讨论了算法的研究现状以及在各种优化问题中的应用情况,同时也指出了蚁群优化算法在当前应用中的一些不足.针对这些不足提出了解决方法,描述了几种蚁群优化算法的修正策略.最后对蚁群优化算法下一步的研究方向进行了展望.  相似文献
6.
动态复杂环境下的机器人路径规划蚂蚁预测算法   总被引:15,自引:0,他引:15  
朱庆保 《计算机学报》2005,28(11):1898-1906
研究了一种新颖的动态复杂不确定环境下的机器人路径规划方法和动态避障码蚁预测算法.该方法模拟蚂蚁的觅食行为,由多组蚂蚁采用最近邻居搜索策略和趋近导向函数相互协作完成全局最优路径的搜索.在此基础上用虚拟蚂蚁完成与动态障碍物碰撞的预测,并用蚁群算法进行避障局部规划.理论和仿真实验结果均表明,即使在障碍物非常复杂的地理环境,用文中算法也能迅速规划出优化路径,且能安全避碰.  相似文献
7.
关于求解难组合优化问题的蚁群优化算法   总被引:11,自引:1,他引:10       下载免费PDF全文
1.引言组合优化问题在规划、调度、资源分配、决策等工程问题中有着非常广泛的应用。在问题规模较小时,可以使用分支定界法或动态规划方法等来求解。当问题规模增大时,解的数目虽然有限,但呈指数增长,要在合理时间内求得准确的最优解实际上已不可能。为此,人们设计了各种启发式算法。近年来,最重要和最有希望的一个研究领域是构造“师法自然“的启发式。它们类比社会系统、物理系统、生物系统等的运行机制,设计算法在问题的解空间中进行非确定性搜索。典型的有遗传算法(GA)、模拟退火(SA)、人工神经网络(ANN)。这些算法由于其自适应性,对难组合优化问题的求解取得了好的结果,被广泛应用于工程优化和控制中。本文将要介绍的蚁群优化算法,由于其较强的自适应性和对问题状态的学习能力,正逐步成为一种新的有潜力的优化算法。  相似文献
8.
蚁群算法的理论及其应用   总被引:10,自引:0,他引:10  
本文介绍了一种崭新的求解复杂优化问题的启发式算法一蚁群算法。该方法通过模拟蚁群搜索食物的过程,达到求解此类问题的目的、它具有智能搜索、全局优化、稳健性强、分布式计算、易与其它方法结合等优点。该算法用于解决组合优化问题,如TSP,QAP,JSP等效果较好.  相似文献
9.
增强型的蚁群优化算法   总被引:9,自引:1,他引:8  
旅行商问题是一个NP-Hard组合优化问题。根据蚁群优化算法和旅行商问题的特点,论文提出了对蚁群中具有优质解的蚂蚁个体所走路径上的信息素强度进行增强的方法,并同其他的优化算法进行了比较,仿真结果表明,对具有全局和局部最优解的个体所走路径上的信息素强度进行增强的蚁群优化算法比标准的蚁群优化算法和其他优化算法在执行效率和稳定性上要高。  相似文献
10.
基于群体智能的分布式数据挖掘方法   总被引:8,自引:0,他引:8  
刘波  潘久辉 《计算机工程》2005,31(8):145-147
蚁群优化是人工智能领域中群体智能分支之一,已经成功地应用于旅行推销员,作业调度由选择等优化问题上,但用它解决数据挖掘问题还是一个新的研究课题,Parepinelli等人针对单一数据库提出了基于ACO的分类算法。该文提出了基于分布式数据库体系结构的ACO分类算法,采用了与Parepinelli算法不同的启发函数计算方法及信息素改变方法,模拟实验表示该方法是有效的。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号