首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  完全免费   23篇
  自动化技术   37篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   8篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
静态软件缺陷预测方法研究   总被引:7,自引:2,他引:5       下载免费PDF全文
静态软件缺陷预测是软件工程数据挖掘领域中的一个研究热点.通过分析软件代码或开发过程,设计出与软件缺陷相关的度量元;随后,通过挖掘软件历史仓库来创建缺陷预测数据集,旨在构建出缺陷预测模型,以预测出被测项目内的潜在缺陷程序模块,最终达到优化测试资源分配和提高软件产品质量的目的.对近些年来国内外学者在该研究领域取得的成果进行了系统的总结.首先,给出了研究框架并识别出了影响缺陷预测性能的3个重要影响因素:度量元的设定、缺陷预测模型的构建方法和缺陷预测数据集的相关问题;接着,依次总结了这3个影响因素的已有研究成果;随后,总结了一类特殊的软件缺陷预测问题(即,基于代码修改的缺陷预测)的已有研究工作;最后,对未来研究可能面临的挑战进行了展望.  相似文献
2.
基于ACO-SVM的软件缺陷预测模型的研究   总被引:3,自引:1,他引:2  
针对传统软件缺陷预测模型的应用范围通常被局限在一定的子空间而影响其适用性和准确性的问题,文中利用支持向量机(SVM)的非线性运算能力和蚁群优化算法(ACO)的寻优能力提出了一种基于ACO-SVM的软件缺陷预测模型.文中首先对待预测的数据进行主成分分析降低数据的维数以提高运算速度,然后根据蚁群优化算法来计算最优的SVM参数,然后再运用SVM进行软件缺陷的预测.并基于十折交叉方法进行实验,通过与传统方法的对比,证明文中方法具有较高的预测精度.  相似文献
3.
软件缺陷集成预测模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用单一分类器构造的缺陷预测模型已经遇到了性能瓶颈, 而集成分类器相比单一分类器往往具有显著的性能优势。以构造高效的集成缺陷预测模型为出发点, 比较了七种不同类型集成分类器的算法和特点。在14个基准数据集上的实验显示, 部分集成预测模型的性能优于基于朴素贝叶斯的单一预测模型。其中, 基于投票的集成分类框架具有最优的预测性能以及统计学意义上的性能优势显著性, 随机森林算法次之。Stacking集成框架也具有较强的泛化能力。  相似文献
4.
基于生命周期的软件缺陷预测技术   总被引:1,自引:0,他引:1  
为保证软件可靠性和软件质量,在基于软件开发周期的基础上,提出了一种利用PCA-BP模糊神经网络的软件缺陷预计方法.针对影响软件可靠性的各种因素,依据相关的标准,结合工程实践,选取了影响软件可靠性的度量元.收集了实际工程中的一类飞行控制软件的度量数据,利用提出的模型进行缺陷预测,并将预测结果与传统的BP神经网络模型计算的结果进行了对比.对比结果表明,与基于BP神经网络的预测方法相比较,结合了主成分分析方法的PCA-BP神经网络预测方法具有更快的收敛速度和更高的预测准确度.  相似文献
5.
随着时软件缺陷重视程度的提高,人们提出了很多软件缺陷预测模型,但所有的模型都只停留在缺陷数预测的基础上,不能系统分析出导致预测结果的真正原因。而本文结合一个具体的软件缺陷预测模型。利用贝叶斯公式对导致结果发生的影响因素进行了分析。此方法不但能对现有开发项目的一些重要影响因素起到控制作用,还为今后的开发项目提供了一定的经验数据,预防同类错误的再次发生。  相似文献
6.
基于机器学习的软件缺陷预测是一种有效的提高软件可靠性的方法。该方法基于软件模块的统计特性预测软件模块可能出现的缺陷数或是否容易出现缺陷。通过对软件模块缺陷状况的预测,软件开发组织可以将有限的资源集中于容易出现缺陷的模块,从而有效地提高软件产品的质量。基于机器学习的软件缺陷预测近年来出现了很多研究成果,文章概述该领域近年来的主要研究成果,并根据各方法的特点进行了分类。  相似文献
7.
软件缺陷预测用来预测软件系统各个模块中是否存在BUG。传统的软件缺陷预测技术研究主要局限在有监督方法上,这类方法需要大量的已标注数据进行训练,但在工程实际中,这类标签数据不易获取。提出了一种结合模拟退火和遗传算法的改进模糊C均值算法,以解决模糊C均值容易受初始聚类中心影响而收敛到局部最优的缺陷。实验结果表明提出的方法在软件缺陷预测中具备高鲁棒性和较高预测精度。  相似文献
8.
软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型。该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择。实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个。实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型。  相似文献
9.
软件缺陷预测是提高软件测试效率,保证软件可靠性的重要途径。考虑到软件缺陷预测模型对软件模块错误分类代价的不同,提出了代价敏感分类的软件缺陷预测模型构建方法。针对代码属性度量数据,采用Bagging方式有放回地多次随机抽取训练样本来构建代价敏感分类的决策树基分类器,然后通过投票的方式集成后进行软件模块的缺陷预测,并给出模型构建过程中代价因子最优值的判定选择方法。使用公开的NASA软件缺陷预测数据集进行仿真实验,结果表明该方法在保证缺陷预测率的前提下,误报率明显降低,综合评价指标AUC和F值均优于现有方法。  相似文献
10.
针对软件缺陷预测中的样本集数量少和分布不对称问题,提出一种基于均衡有偏支持向量机的软件缺陷预测方法。该方法通过标记样本集和未标记样本集进行半监督学习,在少量非对称的标记样本集上,利用有偏支持向量机进行泛化学习。在半监督学习的迭代过程中,采用重采样策略平衡样本集以消除大量不对称的未标记样本集对软件缺陷预测的性能影响。在基准数据集上的实验结果表明,该方法能够有效地对类别不均衡的样本集进行软件缺陷预测。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号