首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  国内免费   15篇
  完全免费   14篇
  自动化技术   60篇
  2018年   2篇
  2017年   7篇
  2016年   3篇
  2015年   7篇
  2014年   15篇
  2013年   9篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   1篇
排序方式: 共有60条查询结果,搜索用时 62 毫秒
1.
迁移学习研究进展   总被引:4,自引:4,他引:6  
近年来,迁移学习已经引起了广泛的关注和研究.迁移学习是运用已存有的知识对不同但相关领域问题进行求解的一种新的机器学习方法.它放宽了传统机器学习中的两个基本假设:(1)用于学习的训练样本与新的测试样本满足独立同分布的条件;(2)必须有足够可利用的训练样本才能学习得到一个好的分类模型.目的是迁移已有的知识来解决目标领域中仅有少量有标签样本数据甚至没有的学习问题.对迁移学习算法的研究以及相关理论研究的进展进行了综述,并介绍了在该领域所做的研究工作,特别是利用生成模型在概念层面建立迁移学习模型.最后介绍了迁移学习在文本分类、协同过滤等方面的应用工作,并指出了迁移学习下一步可能的研究方向.  相似文献
2.
杨沛  谭琦  丁月华 《计算机科学》2009,36(8):212-214
迁移学习能够有效地在相似任务之间进行信息的共享和迁移.之前针对多任务回归的迁移学习研究大多集中在线性系统上.针对非线性回归问题,提出了一种新的多任务回归模型--HiRBF.HiRBF基于层次贝叶斯模型,采用RBF神经网络进行回归学习,假设各个任务的输出层参数服从某种共同的先验分布.根据各个任务是否共享隐藏层,在构造HiRBF模型时有两种可选方案.在实验部分,将两种方案进行了对比,也将HiRBF与两种非迁移学习算法进行了对比,实验结果表明,HiRBF的预测性能大大优于其它两个算法.  相似文献
3.
黄贤立 《计算机工程》2010,36(24):186-188
跨领域的文本分类,是指利用有标记领域的知识去帮助另一个概率分布不同的,未标记领域的知识进行分类的问题。从多视图学习的视角提出一个新的跨领域文本分类的方法(MTV算法)。通过在核空间典型相关分析中引入与标记相关的信息,MTV算法可以得到一个判别性能更优的公共子空间。在多个情感类文本数据上的实验表明,MTV算法可以大大提升传统监督式学习算法面对领域迁移时的分类性能,并且在引入判别式的核空间典型相关分析后,进一步优化性能。  相似文献
4.
双语术语词典在生物医学跨语言检索系统中有着非常重要的地位,而双语句子时齐是构建双语词典的第一步工作.为了构想面向生物医学领域的双语词典,该文将分类思想和迁移学习方法引入汉英句子对齐任务中,将句子对齐任务看成一个多类分类任务,考虑生物医学领域双语摘要的锚信息,利用高斯混合模型完成分类目标.同时,在模型训练过程中,该文引入了迁移学习的思想,结合无噪音的<新概念英语>双语语料对模型的句子长度特征进行训练,使得模型在测试语料上句子对齐的正确率得到较大提高.  相似文献
5.
当现有训练数据过期,而新数据又非常少时,运用迁移学习能够有效提高分类器性能。本文提出一种基于聚类的文本迁移学习算法,给出了算法的主要思想及实现步骤。然后,在中文文本语料库上进行了实验,并与非迁移学习算法进行了比较。实验证明该方法能有效提高分类器性能。  相似文献
6.
数据挖掘作为信息技术的新兴领域,充分结合了数据库、统计分析、人工智能等多领域知识。作为企业信息化建设新方向,对其深入了解非常重要。本文主要介绍了数据挖掘的几种常见的学习方法,特别是重点介绍了新兴的领域:迁移学习。文章的最后将举例简要说明几种学习方法的区别。  相似文献
7.
数据挖掘是从大量数据中提取隐含知识的过程.随着数据挖掘的广泛应用,图作为一种一般数据结构在复杂结构和它们之间相互作用建模中变得越来越重要,这使得图挖掘成为数据挖掘的一个新的热点研究方向之一.由于图分类具有许多真实的应用背景,因而图分类已成为图挖掘中重要的研究领域.目前对图分类的研究都基于一个假设:训练集和测试集都是来源于同一个分布.然而,在很多真实的应用上,训练集和测试集不一定是来自同一个分布的.在本文中,我们将学习如何运用迁移学习的方法来对图数据进行分类,并提出一个基于集成学习的算法TrGBoost,该算法能在少量有标签的图数据和大量相关的图数据集里,有效地建立一个图分类器.真实数据上的实验验证了本文算法的有效性.  相似文献
8.
针对目前大多数基于射频信号强度匹配定位算法在定位精度及鲁棒性方面不足,提出了一种基于动态Radio Map的粒子滤波室内无线定位算法.该算法利用参考节点构建基于空间关联性的动态Radio Map模型,以反映信号环境的实时变化,并将移动目标定位由分类问题转化为回归问题,打破了传统网格式Radio Map模型的限制,降低了算法的时空复杂度.实验结果表明,相对于静态Radio Map模型,动态Radio Map模型将定位精度平均提高了约20%,表现出良好的环境动态自适应能力.  相似文献
9.
迁移学习是对传统监督学习的扩展,试图利用其他相关领域中的现存数据来帮助完成当前领域的学习任务.对于归纳式迁移学习算法,当目标领域只有少量数据时,已有的算法容易受到选择性偏差的影响,不能充分发挥相关领域数据的作用.为解决该问题,提出一种利用领域相似性的新途径:通过定义领域弱相似性的概念,将相似性的约束与目标分类器联系起来,能在训练过程中有效利用相关领域的大量数据,设计出一种基于支持向量机的迁移学习算法TrSVM,并给出求解过程.在大量数据集上的实验结果表明了新算法的有效性.  相似文献
10.
传统机器学习和数据挖掘算法主要基于两个假设:训练数据集和测试数据集具有相同的特征空间和数据分布.然而在实际应用中,这两个假设却难以成立,从而导致传统的算法不再适用.迁移学习作为一种新的学习框架能有效地解决该问题.着眼于迁移学习的一个重要分支——归纳迁移学习,提出了一种基于最大熵模型的加权归纳迁移学习算法WTLME.该算法通过将已训练好的原始领域模型参数迁移到目标领域,并对目标领域实例权重进行调整,从而获得了精度较高的目标领域模型.实验结果表明了该算法的有效性.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号