首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  国内免费   5篇
  完全免费   25篇
  自动化技术   62篇
  2018年   2篇
  2017年   7篇
  2016年   3篇
  2015年   7篇
  2014年   15篇
  2013年   9篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   1篇
  2007年   1篇
排序方式: 共有62条查询结果,搜索用时 46 毫秒
1.
迁移学习研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
近年来,迁移学习已经引起了广泛的关注和研究.迁移学习是运用已存有的知识对不同但相关领域问题进行求解的一种新的机器学习方法.它放宽了传统机器学习中的两个基本假设:(1)用于学习的训练样本与新的测试样本满足独立同分布的条件;(2)必须有足够可利用的训练样本才能学习得到一个好的分类模型.目的是迁移已有的知识来解决目标领域中仅有少量有标签样本数据甚至没有的学习问题.对迁移学习算法的研究以及相关理论研究的进展进行了综述,并介绍了在该领域所做的研究工作,特别是利用生成模型在概念层面建立迁移学习模型.最后介绍了迁移学习在文本分类、协同过滤等方面的应用工作,并指出了迁移学习下一步可能的研究方向.  相似文献
2.
一类基于谱方法的强化学习混合迁移算法   总被引:1,自引:0,他引:1       下载免费PDF全文
在状态空间比例放大的迁移任务中, 原型值函数方法只能有效迁移较小特征值对应的基函数, 用于目标任务的值函数逼近时会使部分状态的值函数出现错误. 针对该问题, 利用拉普拉斯特征映射能保持状态空间局部拓扑结构不变的特点, 对基于谱图理论的层次分解技术进行了改进, 提出一种基函数与子任务最优策略相结合的混合迁移方法. 首先, 在源任务中利用谱方法求取基函数, 再采用线性插值技术将其扩展为目标任务的基函数; 然后, 用插值得到的次级基函数(目标任务的近似Fiedler特征向量)实现任务分解, 并借助改进的层次分解技术求取相关子任务的最优策略; 最后, 将扩展的基函数和获取的子任务策略一起用于目标任务学习中. 所提的混合迁移方法可直接确定目标任务部分状态空间的最优策略, 减少了值函数逼近所需的最少基函数数目, 降低了策略迭代次数, 适用于状态空间比例放大且具有层次结构的迁移任务. 格子世界的仿真结果验证了新方法的有效性.  相似文献
3.
基于动态Radio Map的粒子滤波室内无线定位算法   总被引:1,自引:0,他引:1  
针对目前大多数基于射频信号强度匹配定位算法在定位精度及鲁棒性方面不足,提出了一种基于动态Radio Map的粒子滤波室内无线定位算法.该算法利用参考节点构建基于空间关联性的动态Radio Map模型,以反映信号环境的实时变化,并将移动目标定位由分类问题转化为回归问题,打破了传统网格式Radio Map模型的限制,降低了算法的时空复杂度.实验结果表明,相对于静态Radio Map模型,动态Radio Map模型将定位精度平均提高了约20%,表现出良好的环境动态自适应能力.  相似文献
4.
迁移学习数据分类中的ESVM算法   总被引:1,自引:0,他引:1       下载免费PDF全文
在迁移学习中对变化后的数据集进行分类时,噪音导致分类结果不合理。为此,提出一种迁移学习数据分类中的扩展支持向量机(ESVM)算法。使用变化前数据集的概率分布信息及学习经验,指导缓慢变化后的数据集进行分类,使分割面既可以准确分割现有数据集,同时也保留原先数据集的一些属性。实验结果表明,该算法具有一定的抗噪性能。  相似文献
5.
任何一个学习者,如果在学习中感受不到成就感,或者怀疑所学知识的价值,就会失去学习的兴趣和主动性;如果所学的知识不能够解决实际的问题,或者不会将所学知识迁移到实际问题的过程中,就会让学习者有严重的挫败感。基于这样的现状,西方许多国家采用了基于问题的学习方法(Problem-based learning,以下简称PBL),将学校与社会、学习与生  相似文献
6.
许敏  王士同  顾鑫 《控制与决策》2014,29(1):141-146
迁移学习旨在利用大量已标签源域数据解决相关但不相同的目标域问题. 当与某领域相关的新领域出现时, 若重新标注新领域, 则样本代价昂贵, 丢弃所有旧领域数据又十分浪费. 对此, 基于SVM算法提出一种新颖的迁移学习算法—–TL-SVM, 通过使用目标域少量已标签数据和大量相关领域的旧数据来为目标域构建一个高质量的分类模型, 该方法既继承了基于经验风险最小化最大间隔SVM的优点, 又弥补了传统SVM不能进行知识迁移的缺陷. 实验结果验证了该算法的有效性.  相似文献
7.
作为迁移学习的一个重要研究方向,基于特征映射的方法学习各领域特有特征与领域共享特征之间的相关性,通过一些相关特征减少领域之间的差异,已经获得了广泛的关注和研究。典型相关性分析是一种用来分析两组随机变量之间相关性的统计分析工具。将典型相关性分析引入迁移学习,结合基于特征映射迁移学习的思路,提出了一种跨领域典型相关性分析算法。该算法在保持各领域特有特征与领域共享特征相关性的基础上,通过选择合适的基向量组合训练分类器,使降维后的相关特征在领域间具有相似的判别性。在20Newsgroups 上864个分类问题以及多领域情感分析数据集上12个分类问题的实验结果表明,跨领域典型相关性分析算法可以有效地提高跨领域迁移分类准确率。  相似文献
8.
在脑电图( EEG)信号识别中,EEG信号的采样环境、病人状态的多样性导致分类器训练所用的源域与分类器测试所用的目标域不匹配,分类器在目标域上表现不佳。为此,引入邻域适应策略,提出一种基于子空间相似度的改进主成分分析特征提取方法( SSM-PCA),在选择主成分时,考虑源域和目标域数据的几何和统计特性,并结合迁移学习分类器大间隔投射迁移支持向量机( LMPROJ),给出以SSM-PCA为基础的LMPROJ分类识别方法。实验结果表明,与结合PCA特征抽取技术和K近邻分类器实现的识别方法相比,该方法在识别正确率方面得到较大提升。  相似文献
9.
针对目标域训练样本数量较少无法建立优质分类模型的问题,提出一种在迁移框架下基于集成bagging算法的跨领域分类方法。引入源域的数据并对其进行筛选,对混合数据集进行学习,建立基于集成bagging算法的分类模型,投票得出预测结果。仿真对比结果表明,采用基于贝叶斯个体分类器的集成bagging算法能够优化源域的迁移,提升目标域的分类准确率及泛化性能。分析源域的噪音数据数量,其结果表明,该算法可以部分规避负迁移。  相似文献
10.
传统机器学习面临一个难题,即当训练数据与测试数据不再服从相同分布时,由训练集得到的分类器无法对测试集文本准确分类.针对该问题,根据迁移学习原理,在源领域和目标领域的交集特征中,依据改进的特征分布相似度进行特征加权;在非交集特征中,引入语义近似度和新提出的逆文本类别指数(TF-ICF),对特征在源领域内进行加权计算,充分利用大量已标记的源领域数据和少量已标记的目标领域数据获得所需特征,以便快速构建分类器.在文本数据集20Newsgroups和非文本数据集UCI中的实验结果表明,基于分布和逆文本类别指数的特征迁移加权算法能够在保证精度的前提下对特征快速迁移并加权.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号