首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  自动化技术   2篇
  2020年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
远监督学习是适合大数据下关系抽取任务的一种学习算法.它通过对齐知识库中的关系实例和文本集中的自然语句,为学习算法提供大规模样本数据.利用本体进行关系实例的自动扩充,用于解决基于远监督学习的关系抽取任务中部分待抽取关系的实例匮乏问题.该方法首先通过定义关系覆盖率和公理容积率,来寻找与关系抽取任务关联性大的本体;然后,借助本体推理中的实例查询增加待抽取关系下的关系实例;最后,通过对齐新增关系实例和文本集中的自然语句,达到扩充样本的效果.实验结果表明:基于本体的远监督学习样本扩充方法能够有效完成样本匮乏的关系抽取任务,进一步提升远监督学习方法在大数据环境下的关系抽取能力.  相似文献
2.
远监督关系抽取的最大优势是通过知识库和自然语言文本的自动对生成标记数据.这种简单的自动对齐机制在将人从繁重的样本标注工作中解放出来的同时,不可避免地会产生各种错误数据标记,进而影响构建高质量的关系抽取模型.本文针对远监督关系抽取任务中的标记噪声问题,提出“最终句子对齐的标签是基于某些未知因素所生成的带噪观测结果”这一假设.并在此假设基础上,构建由编码层、基于噪声分布的注意力层、真实标签输出层和带噪观测层的新型关系抽取模型.模型利用自动标记的数据学习真实标签到噪声标签的转移概率,并在测试阶段通过真实标签输出层得到最终的关系分类.随后,研究带噪观测模型与深度神经网络的结合,重点讨论了基于深度神经网络编码的噪声分布注意力机制、以及深度神经网络框架下不均衡样本的降噪处理.通过以上研究,进一步提升基于带噪观测远监督关系抽取模型的抽取精度和鲁棒性.最后,本文在公测数据集和同等参数设置下进行带噪观测远监督关系抽取模型的验证实验,通过分析样本噪声的分布情况,对在各种样本噪声分布下的带噪观测模型进行性能评价,并与现有的主流基线方法进行比较.结果显示本文提出的带噪观测模型具有更高的准确率和召回率.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号