首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  国内免费   1篇
  完全免费   5篇
  自动化技术   16篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
基于项目评分预测的协同过滤推荐算法   总被引:138,自引:4,他引:134       下载免费PDF全文
邓爱林  朱扬勇  施伯乐 《软件学报》2003,14(9):1621-1628
推荐系统是电子商务系统中最重要的技术之一.随着电子商务系统用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法均存在各自的弊端,导致推荐系统的推荐质量急剧下降.针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于项目评分预测的协同过滤推荐算法,根据项目之间的相似性初步预测用户对未评分项目的评分,在此基础上,采用一种新颖的相似性度量方法计算目标用户的最近邻居.实验结果表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著地提高推荐系统的推荐质量.  相似文献
2.
基于内容预测和项目评分的协同过滤推荐   总被引:7,自引:1,他引:6  
曾艳  麦永浩 《计算机应用》2004,24(1):111-113
文中提出了一种基于内容预测和项目评分的协同过滤推荐算法,根据基于内容的推荐计算出用户对未评分项目的评分,在此基础上采用一种基于项目的协同过滤推荐算法计算项目的相似性,随后作出预测。实验结果表明,该算法可以有效解决用户评分数据极端稀疏的情况,同时运用基于项目的相似性度量方法改善了推荐的精确性,显著提高推荐系统的推荐质量。  相似文献
3.
基于项的协同过滤在推荐系统中的应用研究   总被引:4,自引:1,他引:3  
分析基于项的协同过滤在推荐系统中应用及所存在的问题,提出了一个基于项的协同过滤改进算法,并给出了改进算法在标准数据集上的实验结果,对改进算法与原算法进行了相关性能的比较分析,证明了改进算法的有效性.最后,对研究进行了总结,指出存在的不足,提出了进一步研究的方向.  相似文献
4.
一种基于用户兴趣局部相似性的推荐算法   总被引:4,自引:0,他引:4       下载免费PDF全文
吴发青  贺樑  夏薇薇  任磊 《计算机应用》2008,28(8):1981-1985
协作过滤算法作为至今最成功的个性化推荐技术之一,被广泛应用于电子商务、个性化节目推荐等系统中。但传统的基于协作过滤的推荐系统一直受到系统的稀疏性、推荐精确度低等问题的困扰。提出了一种基于用户兴趣局部相似性的改进的协作推荐算法(CFUPS),针对协作过滤算法中用户近邻的计算和项目评分的预测两关键步骤,基于用户间潜在的局部相似的兴趣,并结合项目资源属性和项目评分矩阵来预测项目评分,进而给用户推荐感兴趣的个性化资源,理论上在提高推荐精度、克服稀疏性问题上均有改善。同时实验表明,在极具稀疏性的数据集上,该算法的推荐精度较以往的协作过滤算法有明显提高。  相似文献
5.
基于云模型的项目评分预测推荐算法   总被引:3,自引:0,他引:3       下载免费PDF全文
针对用户评分数据的极端稀疏性和传统计算项目相似性方法存在的弊端,提出一种基于云模型的推荐算法,利用云模型计算项目间的相似度来预测用户对未评分项目的评分,再通过云模型计算用户间的相似度,得到目标用户的最近邻居。实验结果表明,该算法不仅能有效解决用户评分数据的稀疏性问题,还能提高推荐系统的推荐质量。  相似文献
6.
协同过滤算法中新项目推荐方法的研究   总被引:2,自引:1,他引:1  
为了有效地解决协同过滤算法中新项目难以推荐的问题,文中提出了一种对项目矩阵进行划分的方法。其基本思想是,首先利用分类树算法划分项目矩阵并计算项目间的相似度,在此基础上缩小近邻搜索的范围和需要预测的资源数目。通过用户对已有项目的评分排列顺序和项目间相似性预测用户对新项目的评分。实验结果表明:基于项目矩阵划分的协同过滤算法有效地解决新项目推荐困难的问题,显示出了比传统推荐算法更好的推荐质量和扩展性。  相似文献
7.
协同过滤算法中新项目推荐方法的研究   总被引:2,自引:0,他引:2  
为了有效地解决协同过滤算法中新项目难以推荐的问题,文中提出了一种对项目矩阵进行划分的方法.其基本思想是,首先利用分类树算法划分项目矩阵并计算项目间的相似度,在此基础上缩小近邻搜索的范围和需要预测的资源数目.通过用户对已有项目的评分排列顺序和项目间相似性预测用户对新项目的评分.实验结果表明基于项目矩阵划分的协同过滤算法有效地解决新项目推荐困难的问题,显示出了比传统推荐算法更好的推荐质量和扩展性.  相似文献
8.
结合项目分类和云模型的协同过滤推荐算法   总被引:2,自引:2,他引:0       下载免费PDF全文
为了解决用户评分数据稀疏性问题和传统相似性计算方法因严格匹配对象属性而产生的弊端,结合项目分类和云模型提出了一种改进的协同过滤推荐算法。首先,按项目分类得到类别矩阵;然后利用云模型计算类内项目间的相似度并获取具有最高相似度的邻居项目的评分,为类内未评分项目进行预测填充;再利用云模型计算类内用户间的相似度得到用户邻居,最后给出最终的预测评分并产生推荐。实验结果表明,该算法不仅有效地解决了数据稀疏性及传统相似性方法存在的弊端,还提高了用户兴趣及最近邻寻找的准确性;同时,该算法只需计算新增用户或项目所在的类别即可,大大增强了系统的可扩展性。  相似文献
9.
一种优化的Item-based协同过滤推荐算法   总被引:1,自引:0,他引:1  
针对传统的Item-based协同过滤推荐算法在推荐系统应用中存在的不足,提出一种优化的Item-based协同过滤推荐算法.从项目相似性计算,项目近邻选取和预测评分计算三个方面对算法进行了优化,使计算结果更具有实际意义和准确性.实验结果表明,提出的算法可解决传统方法中由于数据稀疏所导致的相似性度量不准确的问题,并显著地提高了算法的推荐精度.  相似文献
10.
雷瑛  吴晶  熊璋 《计算机工程与设计》2007,28(21):5257-5260
协同过滤目前较为成功地应用于个性化推荐系统中.但随着系统规模的扩大和待推荐项目的不断增加,协同过滤面临着稀疏性问题和新项目推荐问题,制约了推荐效果.在此分析了传统协同过滤推荐方法中存在的问题,提出一种基于项目分层的个性化推荐方法.采用了基于多层兴趣表示的用户相似性算法,并结合相似用户推荐项与项目相似性来推荐新项目.该推荐方法在稀疏数据集上能表现出较好的推荐质量,同时也能够有效地解决新项目推荐问题.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号