首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  国内免费   7篇
  完全免费   42篇
  自动化技术   101篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   4篇
  2011年   10篇
  2010年   12篇
  2009年   12篇
  2008年   13篇
  2007年   14篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
排序方式: 共有101条查询结果,搜索用时 93 毫秒
1.
基于FP-Tree的最大频繁项目集挖掘及更新算法   总被引:102,自引:2,他引:100       下载免费PDF全文
宋余庆  朱玉全  孙志挥  陈耿 《软件学报》2003,14(9):1586-1592
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.  相似文献
2.
基于频繁模式树的关联规则增量式更新算法   总被引:49,自引:1,他引:48  
研究了大型事务数据库中关联规则的增量式更新总是,提出了一种基于频繁模式树的关联规则增量式更新算法,以处理最小支持度或事务数据库发生变化后相应关联规则的更新问题,并对其性能进行了分析。  相似文献
3.
基于FP-Tree有效挖掘最大频繁项集   总被引:37,自引:2,他引:35       下载免费PDF全文
最大频繁项集的挖掘过程中,在最小支持度较小的情况下,超集检测是算法的主要耗时操作.提出了最大频繁项集挖掘算法FPMFI(frequent pattern tree for maximal frequent item set)使用基于投影进行超集检测的机制,有效地缩减了超集检测的时间.另外,算法FPMFI通过删除FP子树(conditional frequent pattern tree)的冗余信息,有效地压缩了FP子树的规模,减少了遍历的开销.分析表明,算法FPMFI具有优越性.实验比较说明,在最小支持度较小时,算法FPMFI的性能优于同类算法1倍以上.  相似文献
4.
快速挖掘全局频繁项目集   总被引:32,自引:1,他引:31  
分布式环境中,全局频繁项目集的挖掘是数据挖掘中最重要的研究课题之一.传统的全局频繁项目集挖掘算法采用Apriori算法框架,须多遍扫描数据库并产生大量的候选项目集,且通过传送局部频繁项目集求全局频繁项目集的网络通信代价高.为此,提出了一种分布数据库的全局频繁项目集快速挖掘算法——FMAGF.FMAGF算法采用传送条件频繁模式树或条件模式基来挖掘全局频繁项目集,可有效地减小网络通信量,提高全局频繁项目集挖掘效率.理论分析和实验结果表明提出的算法是有效可行的.  相似文献
5.
最大频繁项目集的快速更新   总被引:28,自引:0,他引:28  
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.为克服基于Apriori的最大频繁项目集挖掘算法存在的不足,DMFIA采用FP-tree存储结构及自顶向下的搜索策略,有效地提高了最大频繁项目集的挖掘效率.但对于频繁项目多而最大频繁项目集维数相对较小的情况,DMFIA要经过多层搜索且在每一层产生大量的候选项目集,因而影响算法的执行效率.为此,该文提出了DMFIA的改进算法IDMFIA(the Improved algorithm of DMFIA).IDMFIA采用自顶向下和自底向上双向搜索策略,可尽早修剪掉较短最大频繁项目集的超集和较长最大频繁项目集的子集.另外,该文还提出最大频繁项目集更新算法FUMFIA(Fast Updating Maximum Frequent Itemsets Algorithm),该算法充分利用已建立的FP-tree和已挖掘的最大频繁项目集,可对已挖掘的最大频繁项目集进行高效维护.实验结果表明,IDMFIA和FUMFIA可有效提高最大频繁项目集的挖掘和更新效率.  相似文献
6.
一种基于前缀广义表的关联规则增量式更新算法   总被引:21,自引:1,他引:20  
杨明  孙志挥 《计算机学报》2003,26(10):1318-1325
关联规则挖掘是数据挖掘研究的一个重要方面,关联规则的高效维护算法研究是当前研究的热点.传统更新算法与Apriori算法框架一致,要多遍扫描数据库并产生大量的候选项目集.为此,该文对FP-tree进行了改进,引入了前缀广义表——PG-List,并提出了基于PG-List的关联规则挖掘(MARBPGL)与增量式更新算法(IUABPGL).算法MARBPGL仅须扫描数据库两遍,算法IUABPGL在最坏的情况下仅须扫描原数据库一遍,扫描新增数据库两遍,且两个算法均无须生成候选项目集,避免了产生“知识的组合爆炸”,提高了挖掘和维护的效率.理论分析和实验结果表明该文提出的算法是有效可行的.  相似文献
7.
快速挖掘全局最大频繁项目集   总被引:19,自引:1,他引:18       下载免费PDF全文
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.现行可用的最大频繁项目集挖掘算法大多基于单机环境,针对分布式环境下的全局最大频繁项目集挖掘尚不多见.若将基于单机环境的最大频繁项目集挖掘算法运用于分布式环境,或运用分布式环境下的全局频繁项目集挖掘算法来挖掘全局最大频繁项目集,均会产生大量的候选频繁项目集,且网络通信代价高.为此,提出了快速挖掘全局最大频繁项目集算法FMGMFI(fast mining global maximum frequent itemsets),该算法采用FP-tree存储结构,可方便地从各局部FP-tree的相关路径中得到项目集的频度,同时采用自顶向下和自底向上的双向搜索策略,可有效地降低网络通信代价.实验结果表明,FMGMF算法是有效、可行的.  相似文献
8.
快速更新全局频繁项目集   总被引:15,自引:0,他引:15       下载免费PDF全文
杨明  孙志挥  宋余庆 《软件学报》2004,15(8):1189-1197
数据挖掘中的频繁项目集更新算法研究是重要的研究课题之一.目前已有的频繁项目集更新算法主要针对单机环境,有关分布式环境下的全局频繁项目集的更新算法的研究尚不多见.为此,提出了快速更新全局频繁项目集算法(fast updating algorithm for globally frequent itemsets,简称FUAGFI).该算法主要考虑数据库记录增加时全局频繁项目集的更新情况.FUAGFI利用已建立的各局部频繁模式树(frequent pattern tree,简称FP-tree)及已挖掘的全局频繁项目集,可有效地降低网络通信量,提高全局频繁项目集的更新效率.实验结果表明,所提出的更新算法是行之有效的.  相似文献
9.
基于FP树的全局最大频繁项集挖掘算法   总被引:13,自引:1,他引:12  
挖掘最大频繁项集是多种数据挖掘应用了更新最大频繁候选项集集合,需要反复地扫描整个数据库,而且大部分算法是单机算法,全局最大频繁项集挖掘算法并不多见.为此提出MGMF算法,该算法利用FP-树结构,类似FP-树挖掘方法,一遍就可以挖掘出所有的最大频繁项集,并且超集检测非常简单、快捷.另外MGMF算法采用了分布式PDDM算法播报消息的思想,具有很好的拓展性和并行性.实验证明MGMF算法是有效可行的.  相似文献
10.
基于FP-tree的最大频繁模式挖掘算法   总被引:11,自引:0,他引:11  
冯志新  钟诚 《计算机工程》2004,30(11):123-124
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号