首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  国内免费   1篇
  完全免费   5篇
  自动化技术   7篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
基于高光谱吸收特征参数的分类研究   总被引:3,自引:1,他引:2       下载免费PDF全文
在Weka平台上,采用决策树C4.5、朴素贝叶斯、朴素贝叶斯树三种算法进行了带缺失属性值的高光谱分类研究。针对高光谱波段数众多、信息冗余量大的特点,首先对光谱曲线进行光谱特征参数提取,然后再选择合适的吸收峰波段作为输入向量来进行分类。实验表明,由NBTree建立的铀黑-沥青铀矿分类模型的分类误差最小,分类精度最高,其次是NaveBayes和J4.8,但从训练时间来看,NBTree则高于NB和J4.8。最后,对三种分类算法的分类结果进行了分析。  相似文献
2.
陈进  王润生 《计算机应用》2006,26(8):1876-1878
分析了高斯似然分类错误率和Bhattacharyya距离的关系,同时推导出在独立特征条件下Bhattacharyya距离具有相加的性质,并在这些基础上提出了一种新的特征选择算法。该算法以各特征的相对Bhattacharyya和作为准则函数选择能有效降低分类错误率的一组特征,最后利用这组特征进行高斯似然分类。实验采用AVIRIS数据,结果证明了该算法的有效性。  相似文献
3.
高光谱遥感数据以数据量大、含混度高、地面样本数据少的特点给分类处理带来了困难。将独立成分分析技术与多层前向神经网络相结合,得到一种新的分类算法。独立成分分析在提取有效光谱特征的同时,大大降低了数据的维数。神经网络作为分类器,分类精度显著高于传统的bayes分类器。通过对220波段的高光谱数据进行实验,得到了良好的效果。  相似文献
4.
神经网络是遥感地物自动分类的重要工具之一。利用多尺度几何分析中的眷波基函数建立了一种自适应眷波网络模型。在传统自适应粒子群算法的基础上,提出一种引入粒子密度因子的自适应粒子群优化算法作为网络训练算法。为验证其性能,利用互信息约简技术对22。波段AVIRIS 92AV3C高光谱数据进行约简,并将它们作为网络输入实现对高光谱遥感地物的自动分类。仿真试验表明:引入粒子密度因子的粒子群算法与传统粒子群算法相比,不易出现早熟问题,在处理高维非线性组合优化问题时具有一定优势;由于眷波函数对高维奇异性的表征能力,相比于传统的RBF和SVM分类器,脊波神经网络分类器对具有明显边界特征的地物分类问题具有较高的精度,同时网络规模小,结构简单。  相似文献
5.
在Bagging支持向量机(SVM)的基础上,将动态分类器集选择技术用于SVM的集成学习,研究了SVM动态集成在高光谱遥感图像分类中的应用。结合高光谱数据特性,通过随机选取特征子空间和反馈学习改进了BaggingSVM方法;通过引进加性复合距离改善了K近邻局部空间的计算方法;通过将错分的训练样本添加到验证集增强了验证集样本的代表性。实验结果表明,与单个优化的SVM和其他常见的SVM集成方法相比,改进后的SVM动态集成分类精度最高,能有效地提高高光谱遥感图像的分类精度。  相似文献
6.
目的 针对高光谱数据波段多、数据存在冗余的特点,将小波包信息熵特征引入到高光谱遥感分类中。方法 通过对光谱曲线进行小波包分解变换,定义了小波包信息熵特征矢量光谱角分类方法(WPE-SAM),基于USGS光谱库中4种矿物光谱数据的分析表明,WPE-SAM可增大类间地物的可区分性。在特征矢量空间对Salina高光谱影像进行分类计算,并讨论了小波包最佳分解层的确定,分析了WPE-SAM与光谱角制图(SAM)方法的分类精度。结果 Salina数据实例计算表明:小波包信息熵矢量能较好地描述原始光谱特征,WPE-SAM分类方法可行,总体分类精度(OA)由SAM的78.62%提高到WPE-SAM的78.66%,Kappa系数由0.769 0增加到0.769 5,平均分类精度(AA)由83.14%提高到84.18%。此外,通过Pavia数据验证了WPE-SAM分类方法具有较强的普适性。结论 小波包信息熵特征可较好地表示原始光谱波峰、波谷等特征信息,定义的小波包信息熵特征矢量光谱角分类方法(WPE-SAM)可增大类间地物可区分性,有利于分类。实验结果表明,WPE-SAM分类方法技术可行,总体精度及Kappa系数较SAM有一定的提高,且有较强的普适性。但WPE-SAM方法精度与效率有待进一步提高。  相似文献
7.
目的 高光谱数据具有较高的谱间分辨率和相关性,给分类处理带来了一定的困难.为了提高分类精度,提出一种结合PCA与移动窗小波变换的高光谱决策融合分类算法.方法 首先,利用相关系数矩阵对原始高光谱数据进行波段分组;然后,利用主成分分析对每组数据进行谱间降维;再根据提出的移动窗小波变换法进行空间特征提取;最后,采用线性意见池(LOP)决策融合规则对多分类器的分类结果进行融合.结果 采用两组来自不同传感器的数据进行实验,所提算法的分类精度和Kappa系数均高于已有的5种分类算法.与SVM-RBF算法相比,本文算法的分类精度高出了8%左右.结论 实验结果表明,本文算法充分挖掘了高光谱图像的谱间-空间信息,能有效提高分类正确率,在小样本情况下和噪声环境中也具有良好的分类性能.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号