首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
高维函数优化一般是指维数超过100维的函数优化问题,由于“维数灾难”的存在,求解起来十分困难.针对灰狼算法迭代后期收敛速度慢,求解高维函数易陷入局部最优的缺点,在基本灰狼算法中引入3种遗传算子,提出一种遗传-灰狼混合算法(hybrid genetic grey wolf algorithm,HGGWA).混合算法能够充分发挥两种算法各自的优势,提高算法的全局收敛性,针对精英个体的变异操作有效防止算法陷入局部最优值.通过13个标准测试函数和10个高维测试函数验证算法的性能,并将优化结果与PSO、GSA、GWO三种基本算法以及9种改进算法进行比较.仿真结果表明,所提算法在收敛精度方面得到了极大改进,验证了HGGWA算法求解高维函数的有效性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号