首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  国内免费   19篇
  完全免费   179篇
  自动化技术   476篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   13篇
  2016年   10篇
  2015年   31篇
  2014年   43篇
  2013年   26篇
  2012年   53篇
  2011年   53篇
  2010年   52篇
  2009年   44篇
  2008年   48篇
  2007年   35篇
  2006年   21篇
  2005年   13篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
排序方式: 共有476条查询结果,搜索用时 78 毫秒
1.
基于连续Adaboost算法的多视角人脸检测   总被引:36,自引:4,他引:32  
提出了一种基于连续Adaboost算法的多视角人脸检测方法.人脸按其三维姿态被划分成若干个视点子类,针对每个子类使用Haar型特征设计了具有连续致信度输出的查找表型弱分类器形式,构造出弱分类器空间,采用连续Adaboost算法学习出基于视图的瀑布型人脸检测器.为了提高检测速度,使用了多分辨率搜索和姿态预估计策略.对于正面人脸检测,在CMU MIT的正面人脸测试集合上检测的正确率为94.5%,误报57个;对于多视角人脸检测,在CMU侧面人脸测试集合上检测的正确率为89.8%,误报221个.在一台PentiumⅣ2.4GHz的PC上,处理一幅大小为320×240的图片平均需80ms.实验结果表明该方法十分有效,具有明显的应用价值.  相似文献
2.
一种改进的AdaBoost算法——AD AdaBoost   总被引:19,自引:0,他引:19  
目标检测问题是计算机视觉领域最普遍和关键的问题之一.基于级联结构的AdaBoost算法目前被认为是较有效的检测算法,但是其在低FRR端的性能仍需改进.文章提出了一种针对目标检测问题的改进AdaBoost算法--AD AdaBoost.AD AdaBoost采用了新的参数求解方法,弱分类器的加权参数不但与错误率有关,还与其对正样本的识别能力有关.该算法能够有效地降低分类器在低FRR端的FAR,使其更适用于目标检测问题.新旧算法在复杂背景中文字检测的实验结果对比证实了新算法在性能上的改进.  相似文献
3.
关于AdaBoost有效性的分析   总被引:13,自引:1,他引:12  
在机器学习领域,弱学习定理指明只要能够寻找到比随机猜测略好的弱学习算法,则可以通过一定方式,构造出任意误差精度的强学习算法.基于该理论下最常用的方法有AdaBoost和Bagging.AdaBoost和Bagging的误差分析还不统一;AdaBoost使用的训练误差并不是真正的训练误差,而是基于样本权值的一种误差,是否合理需要解释;确保AdaBoost有效的条件也需要有直观的解释以便使用.在调整Bagging错误率并采取加权投票法后,对AdaBoost和Bagging的算法流程和误差分析进行了统一,在基于大数定理对弱学习定理进行解释与证明基础之上,对AdaBoost的有效性进行了分析.指出AdaBoost采取的样本权值调整策略其目的是确保正确分类样本分布的均匀性,其使用的训练误差与真正的训练误差概率是相等的,并指出了为确保AdaBoost的有效性在训练弱学习算法时需要遵循的原则,不仅对AdaBoost的有效性进行了解释,还为构造新集成学习算法提供了方法.还仿照AdaBoost对Bagging的训练集选取策略提出了一些建议.  相似文献
4.
人脸检测与检索   总被引:13,自引:1,他引:12  
研究了将人脸作为一种特殊的图像内容进行检索的问题;采用基于Adaboost统计学习方法的层叠分类器检测人脸,再用非线性SVM分类器验证人脸;实现了在大规模的复杂背景图片集合中高速准确的人脸定位;为了将找到的人脸规范化,借鉴直接表观模型(direct appearance model),提出了一种新的特征检测和人脸校正方法.该方法基于对大量数据的统计学习过程,具有良好的扩展性和稳定性;在此基础上.采用SVM分类器实现了人脸检索;最后,通过实验说明了整个方法的有效性.  相似文献
5.
AdaBoost算法研究进展与展望   总被引:12,自引:0,他引:12       下载免费PDF全文
AdaBoost是最优秀的Boosting算法之一, 有着坚实的理论基础, 在实践中得到了很好的推广和应用. 算法能够将比随机猜测略好的弱分类器提升为分类精度高的强分类器, 为学习算法的设计提供了新的思想和新的方法. 本文首先介绍Boosting猜想提出以及被证实的过程, 在此基础上, 引出AdaBoost算法的起源与最初设计思想;接着, 介绍AdaBoost算法训练误差与泛化误差分析方法, 解释了算法能够提高学习精度的原因;然后, 分析了AdaBoost算法的不同理论分析模型, 以及从这些模型衍生出的变种算法;之后, 介绍AdaBoost算法从二分类到多分类的推广. 同时, 介绍了AdaBoost及其变种算法在实际问题中的应用情况. 本文围绕AdaBoost及其变种算法来介绍在集成学习中有着重要地位的Boosting理论, 探讨Boosting理论研究的发展过程以及未来的研究方向, 为相关研究人员提供一些有用的线索. 最后,对今后研究进行了展望, 对于推导更紧致的泛化误差界、多分类问题中的弱分类器条件、更适合多分类问题的损失函数、 更精确的迭代停止条件、提高算法抗噪声能力以及从子分类器的多样性角度优化AdaBoost算法等问题值得进一步深入与完善.  相似文献
6.
Adaboost人脸检测方法的改进   总被引:10,自引:0,他引:10       下载免费PDF全文
魏冬生  李林青 《计算机应用》2006,26(3):619-0621
针对Adaboost人脸检测训练非常耗时的问题,从训练中直接求解目标函数和弱分类器使用双阈值判决构造强分类器两个方面对人脸检测系统进行了改进。实验结果表明,改进后的系统使用的弱分类器数目大大减少,并且训练速度比传统方法高11倍左右。  相似文献
7.
AdaBoost算法的一种改进方法   总被引:10,自引:0,他引:10  
Boosting是一种改善任意给定的机器学习算法准确性的通用方法.主要针对AdaBoost算法,介绍了AdaBoost算法的研究背景.分析了实验过程中出现的退化问题以及目标类权重分布扭曲的现象,提出了一种基于调整权重分布,限制权重扩张的改进方法,最后给出了实验结果和分析.  相似文献
8.
分类器线性组合的有效性和最佳组合问题的研究   总被引:8,自引:0,他引:8  
通过多个分类器的组合来提升分类精度是机器学习领域主要研究内容,弱学习定理保证了这种研究的可行性.分类器的线性组合,也即加权投票.是最常用的组合方法,其中广泛使用的AdaBoost算法和Bagging算法就是采取的加权投票.分类器组合的有效性问题以及最佳组合问题均需要解决.在各单个分类器互不相关和分类器数量较多条件下,得到了分类器组合有效的组合系数选取条件以及最佳组合系数公式,给出了组合分类器的误差分析.结论表明,当各分类器分类错误率有统一的边界时,即使采取简单投票,也能确保组合分类器分类错误率随分类器个数增加而以指数级降低.在此基础上,仿照AdaBoost算法,提出了一些新的集成学习算法.特别是提出了直接面向组合分类器分类精度快速提升这一目标的集成学习算法.分析并指出了这种算法的合理性和科学性.它是对传统的以错误率最低为目标的分类器训练与选取方法的延伸和扩展.从另一个角度证明了AdaBOOSt算法中采用的组合不仅有效.而且在一定条件下等效于最佳组合.针对多分类问题.得到了与二分类问题类似的分类器组合理论与结论.包括组合有效条件、最佳组合、误差估计等.还对AdaBoOSt算法进行了一定的扩展.  相似文献
9.
动态权值预划分实值Adaboost人脸检测算法   总被引:8,自引:0,他引:8       下载免费PDF全文
武妍  项恩宁 《计算机工程》2007,33(3):208-209
提出了Real-Adaboost的一种改进算法。该算法采用预先计算类Haar特征所对应弱分类器在样本空间的划分,并动态更新人脸训练样本的权值。与以往的Real-Adaboost算法比较,该算法大大缩短了训练时间,算法训练时间复杂度降到O(T*M*N),同时加速了强分类器的收敛性能,减少检测器的弱分类器数量,减少检测时间。  相似文献
10.
基于词频分类器集成的文本分类方法   总被引:8,自引:0,他引:8  
提出了一种基于词频分类器集成的文本分类方法.词频分类器是在对文本中的单词和它在每个文本中出现的频率进行统计后得到的简单分类器.虽然词频分类器本身泛化能力不强,但它不仅计算代较小,而且在训练样本甚至类别增加时易于进行更新,而整个学习系统的泛化能力可以由集成学习机制来提高,因此,词频分类器很适合用做集成学习的基分类器.在集成时,使用了改进的AdaBoost算法,加入了一种强制重新分布权的机制,避免算法过早停止,更加适合文本分类任务.在标准文集Reuters-21578上的实验结果表明,该方法能取得很好的效果.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号