首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   1篇
  自动化技术   2篇
  2021年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
机器学习中的隐私保护问题是目前信息安全领域的研究热点之一。针对隐私保护下的分类问题,该文提出一种基于差分隐私保护的AdaBoost集成分类算法:CART-DPsAdaBoost (CART-Differential Privacy structure of AdaBoost)。算法在Boosting过程中结合Bagging的基本思想以增加采样本的多样性,在基于随机子空间算法的特征扰动中利用指数机制选择连续特征分裂点,利用Gini指数选择最佳离散特征,构造CART提升树作为集成学习的基分类器,并根据Laplace机制添加噪声。在整个算法过程中合理分配隐私预算以满足差分隐私保护需求。在实验中分析不同树深度下隐私水平对集成分类模型的影响并得出最优树深值和隐私预算域。相比同类算法,该方法无需对数据进行离散化预处理,用Adult、Census Income两个数据集实验结果表明,模型在兼顾隐私性和可用性的同时具有较好的分类准确率。此外,样本扰动和特征扰动两类随机性方案的引入能有效处理大规模、高维度数据分类问题。  相似文献
2.
《计算机工程》2020,(1):93-101
数据挖掘中的隐私保护问题是目前信息安全领域的研究热点之一。针对隐私保护要求下的分类问题,提出一种面向差分隐私保护的随机森林算法RFDPP-Gini。将随机森林与差分隐私保护相结合,在隐私信息得到保护的同时提高分类的准确率。以CART分类树作为随机森林中的单棵决策树,使用Laplace机制和指数机制添加噪声并选择最佳分裂特征。实验结果表明,RFDPP-Gini算法既能处理离散型特征又能处理连续型特征,在Adult和Mushroom数据集上的分类准确率最高分别达86.335%和100%,且在加入噪声后算法的分类准确率下降幅度极小。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号