首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276224篇
  免费   24003篇
  国内免费   15543篇
电工技术   22008篇
技术理论   10篇
综合类   25168篇
化学工业   37908篇
金属工艺   13537篇
机械仪表   23407篇
建筑科学   24107篇
矿业工程   8086篇
能源动力   11188篇
轻工业   19822篇
水利工程   8088篇
石油天然气   12594篇
武器工业   2896篇
无线电   22355篇
一般工业技术   27785篇
冶金工业   9098篇
原子能技术   3725篇
自动化技术   43988篇
  2024年   618篇
  2023年   3185篇
  2022年   5521篇
  2021年   7752篇
  2020年   7441篇
  2019年   6661篇
  2018年   6443篇
  2017年   8125篇
  2016年   9574篇
  2015年   10205篇
  2014年   15995篇
  2013年   16698篇
  2012年   19053篇
  2011年   21743篇
  2010年   16504篇
  2009年   17473篇
  2008年   16550篇
  2007年   19107篇
  2006年   17211篇
  2005年   14395篇
  2004年   12320篇
  2003年   11017篇
  2002年   9029篇
  2001年   7301篇
  2000年   6329篇
  1999年   5119篇
  1998年   4085篇
  1997年   3365篇
  1996年   2863篇
  1995年   2547篇
  1994年   2226篇
  1993年   1803篇
  1992年   1521篇
  1991年   1058篇
  1990年   794篇
  1989年   712篇
  1988年   564篇
  1987年   381篇
  1986年   346篇
  1985年   309篇
  1984年   335篇
  1983年   289篇
  1982年   254篇
  1981年   162篇
  1980年   129篇
  1979年   93篇
  1978年   80篇
  1977年   74篇
  1976年   69篇
  1975年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
2.
Metals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure).  相似文献   
3.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
4.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
5.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
6.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
7.
The effect of microwave roasting parameters (300, 450 and 600 W; 5, 10 and 15 min) on acrylamide content in sorghum grain was determined using High Pressure Liquid Chromatography (HPLC)-photo diode array (PDA) detector coupled with C-18 column. Samples roasted at 300 and 450 W did not possess acrylamide, whereas 600 W (15 min) favoured formation of 2740.19 µg/kg of acrylamide, levels far exceeding the defined European Union (EU) limits. The chronic daily intake (CDI) for acrylamide through consumption of such grain flour was 3.25–9.5-fold higher to Joint FAO/WHO Expert Committee on Food Additives (JECFA) defined high exposure limits. The margin of exposure (MOE) values ranged from 4.3 to 12.76 and from 11.07 to 32.27 for neoplastic and neurological effects, respectively, demonstrating high exposure and serious health concerns associated with dietary intake of this toxicant. This study assesses the risk for the Indian population and highlights the importance of optimising process parameters for food product to minimise such exposure risks.  相似文献   
8.
液相色谱-串联质谱(LC-MS/MS)技术具有高灵敏度、高特异性、高分辨率和高效率的优点。近年来随着仪器灵敏度的提高,LC-MS/MS在常规临床检验中显示出极大的潜力,并在疾病早期预防和诊断中发挥着不可替代的作用。本文对LC-MS/MS在新生儿疾病筛查、维生素D检测、内分泌激素检测、肽类和蛋白质定量分析等临床检验方面的研究进展进行综述,并讨论了未来面临的挑战。  相似文献   
9.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
10.
Solid oxide fuel cells (SOFCs) are considered an important technology in terms of high efficiency and clean energy generation. Flat-tubular solid oxide fuel cell (FT-SOFC) which is a combination of tubular and planar cell geometries stands out with its performance values and low costs. In this study, the performance of an FT-SOFC is analyzed numerically by using finite element method-based design as a result of changing parameters by using different fuels which are pure hydrogen and coal gas with various proportions of CO. In addition, cell performance values for different temperatures were analyzed and interpreted. Analyzes have been performed by using COMSOL Multiphysics software. The rates of CO composition used are 10%, 20%, and 40%, respectively. In addition, the air was used as the oxidizer in all cases. The cell voltage and average cell power of the FT-SOFC were examined under the 800 °C operating condition. The maximum power value and current density value were obtained as 710 W/m2 and 1420 A/m2 for the flat-tubular cell, respectively. As a result of the study, it was observed that the maximum cell power densities increased with increasing temperature. Analysis results showed that FT-SOFCs have suitable properties for different fuel usage and different operating temperatures. High-performance values and design features in different operating conditions are expected to make FT-SOFC the focus of many studies in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号