首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200200篇
  免费   26228篇
  国内免费   21208篇
电工技术   19469篇
技术理论   10篇
综合类   13881篇
化学工业   36277篇
金属工艺   7897篇
机械仪表   12369篇
建筑科学   8094篇
矿业工程   2373篇
能源动力   6001篇
轻工业   13463篇
水利工程   2502篇
石油天然气   4144篇
武器工业   2054篇
无线电   31106篇
一般工业技术   20679篇
冶金工业   4227篇
原子能技术   3288篇
自动化技术   59802篇
  2024年   249篇
  2023年   3117篇
  2022年   5252篇
  2021年   6894篇
  2020年   7435篇
  2019年   8812篇
  2018年   5353篇
  2017年   7243篇
  2016年   7414篇
  2015年   9097篇
  2014年   9339篇
  2013年   12526篇
  2012年   14867篇
  2011年   17280篇
  2010年   12037篇
  2009年   12033篇
  2008年   13530篇
  2007年   15282篇
  2006年   14651篇
  2005年   12686篇
  2004年   10697篇
  2003年   8623篇
  2002年   6512篇
  2001年   4844篇
  2000年   3872篇
  1999年   3280篇
  1998年   2687篇
  1997年   2169篇
  1996年   1835篇
  1995年   1541篇
  1994年   1345篇
  1993年   1010篇
  1992年   802篇
  1991年   614篇
  1990年   524篇
  1989年   382篇
  1988年   296篇
  1987年   178篇
  1986年   178篇
  1985年   230篇
  1984年   207篇
  1983年   145篇
  1982年   200篇
  1981年   97篇
  1980年   96篇
  1979年   24篇
  1978年   15篇
  1977年   25篇
  1976年   14篇
  1959年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Soils and Foundations》2022,62(3):101150
The circular helicoid pile (CH pile) is a new type of special-shaped pile that has been developed in Japan and South Korea in the past decade and has been widely used in the fields of construction, transportation, natural energy and agriculture due to its excellent compressive and pullout bearing performances. Consequently, this new type of pile has good engineering application prospects. However, as an innovative engineering structure, the CH pile is not widely known by geotechnical engineers worldwide. The geometric structure of the CH pile is similar to a circular helicoid in differential geometry. Therefore, the pile-soil interaction problem cannot be reduced to a plane strain problem or an axisymmetric problem in theoretical research. In view of this, dry silica sand was used as the model foundation in this study, and a model test device and method that can effectively reflect the installation process and loading-bearing service state of CH piles were developed. Under different installation methods, pile structures and foundation soil conditions, 90 model tests were carried out to evaluate the engineering performances of CH piles during the whole process of installation and bearing, including the installation performances during the installation process, the compressive bearing performances under axial compressive loading and the pullout bearing performances under axial pullout loading. Compared with steel sheet piles and steel pipe piles, CH piles have better engineering performance and more economic benefits from the aspects of installation, construction, recycling, timeliness of engineering application, and the relative relationship between bearing capacity and pile mass.  相似文献   
2.
《Soils and Foundations》2022,62(6):101222
This work addresses the problem of the loading capacity of an anchor plate coupled with a steel wire mesh in soil retaining applications. The interaction mechanism between the flexible mesh facing, the underlying soil layer and the plate is studied starting from the results of several laboratory punch tests involving both the plate and the mesh only, and the whole soil-mesh-plate system. The experimental tests have been reproduced by adopting a 3D discrete element model where also the wire mesh is discretized as an assembly of interconnected nodal particles. The interaction between these particles is ruled by elasto-plastic tensile force–displacement laws in which a distortion is introduced in a stochastic manner to account for the wires’ geometrical irregularities. The mesh model is then validated with reference to a set of punch tests in which the shape and size of the punching element as well as the nominal wire diameter were varied. Subsequently, the model is extended to a punch against soil test configuration permitting an insight into the nontrivial local mechanism between the mesh facing and the underlying granular layer. The good agreement between the numerical predictions and the experimental observations at the laboratory scale allowed us to extend the model towards more realistic field conditions for which the role of the mesh panel boundary conditions, the mesh mechanical properties, the soil mechanical properties and the anchor plate geometry is investigated.  相似文献   
3.
《Soils and Foundations》2022,62(6):101246
This study analyzed the effect of different treatment methods in enzyme-induced carbonate precipitation (EICP) on the mechanical properties of soil. Soybean crude urease was used to catalyze the precipitation of calcium carbonate (CaCO3). A multiple-phase method was proposed and further compared with commonly practiced EICP treatment methods (including the one-phase method, two-phase method, and premix-and-compact method) from the aspects of chemical conversion efficiency, CaCO3 precipitation distribution, permeability, and unconfined compressive strength. Based on the findings, the characteristics of each method were further discussed and summarized. Although the enzymatic CaCO3 precipitation generated from all the treatment methods could potentiate the soil strength to a great or less degree, using the proposed multiple-phase method could bring about a high chemical conversion efficiency, uniform distribution of CaCO3 as well as preferable permeability retention. In addition, the multiple-phase method could significantly improve the efficiency of urease usage.  相似文献   
4.
This paper presents a field-scale experimental track over a poor subgrade with an unreinforced section and a geocell-reinforced section subjected to in-situ performance tests. Plate load tests and Benkelman beam tests were carried out distributed in several unreinforced and reinforced layers. The objective was to: (1) examine the variability of the elastic modulus of unbound granular material (UGM) due the influence of its thickness and the presence of poor subgrade in its base, (2) evaluate the modulus improvement factor (MIF) generated by the geocell reinforcement in the UGM and (3) verify the most appropriate condition to apply the MIF to transport infrastructure design. The results showed that there is a significant influence of the thickness of the UGM layer on its elastic modulus when the layer is supported directly over a soft subgrade. The MIF values obtained in field suggest that its determination is mostly related to the UGM maximum elastic modulus rather than its decreased values (by virtue of poor subgrade or reduced thicknesses), and that the analytical formulation presented for MIF calculation has good predictive capability to be applied to pavement design.  相似文献   
5.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   
6.
Abrasive suspension flow machining (ASFM) is an advanced finishing method that uses an abrasive suspension slurry for grinding and chamfering as well as the finishing of inaccessible components. This study examines the effect of back pressure on the grinding characteristics of an abrasive suspension flow during the grinding of slender holes. A numerical model was developed to simulate the abrasive suspension flow in a slender hole and was verified experimentally using injector nozzle grinding equipment under different grinding pressures and back pressures. It is shown that the ASFM with back pressure not only eliminates the cavitation flow in the spray hole, but also increases the number of effective abrasive particles and the flow coefficient. Increasing the back pressure during the grinding process can increase the Reynolds number of the abrasive suspension flow and reduce the thickness of the boundary layer in the slender hole. Moreover, increasing the back pressure can improve the flow rate of the injector nozzle and its grinding performance.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00372-z  相似文献   
7.
Digital twin (DT) has garnered attention in both industry and academia. With advances in big data and internet of things (IoTs) technologies, the infrastructure for DT implementation is becoming more readily available. As an emerging technology, there are both potential and challenges. DT is a promising methodology to leverage the modern data explosion to aid engineers, managers, healthcare experts and politicians in managing production lines, patient health and smart cities by providing a comprehensive and high fidelity monitoring, prognostics and diagnostics tools. New research and surveys into the topic are published regularly, as interest in this technology is high although there is a lack of standardization to the definition of a DT. Due to the large amount of information present in a DT system and the dual cyber and physical nature of a DT, augmented reality (AR) is a suitable technology for data visualization and interaction with DTs. This paper seeks to classify different types of DT implementations that have been reported, highlights some researches that have used AR as data visualization tool in DT, and examines the more recent approaches to solve outstanding challenges in DT and the integration of DT and AR.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00375-w  相似文献   
8.
An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole. Therefore, suitable simulation models are necessary to evaluate new tool designs and optimize drilling processes. In this paper the coolant distribution during helical deep hole drilling is analyzed with high-speed microscopy. Micro particles are added to the cutting fluid circuit by a developed high-pressure mixing vessel. After the evaluation of suitable particle size, particle concentration and coolant pressure, a computational fluid dynamics (CFD) simulation is validated with the experimental results. The comparison shows a very good model quality with a marginal difference for the flow velocity of 1.57% between simulation and experiment. The simulation considers the kinematic viscosity of the fluid. The results show that the fluid velocity in the chip flutes is low compared to the fluid velocity at the exit of the coolant channels of the tool and drops even further between the guide chamfers. The flow velocity and the flow pressure directly at the cutting edge decrease to such an extent that the fluid cannot generate a sufficient cooling or lubrication. With the CFD simulation a deeper understanding of the behavior and interactions of the cutting fluid is achieved. Based on these results further research activities to improve the coolant supply can be carried out with great potential to evaluate new tool geometries and optimize the machining process.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00383-w  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号