首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18217篇
  免费   1851篇
  国内免费   1364篇
电工技术   1019篇
综合类   944篇
化学工业   745篇
金属工艺   1105篇
机械仪表   784篇
建筑科学   433篇
矿业工程   125篇
能源动力   373篇
轻工业   193篇
水利工程   64篇
石油天然气   127篇
武器工业   117篇
无线电   2601篇
一般工业技术   1734篇
冶金工业   2414篇
原子能技术   88篇
自动化技术   8566篇
  2024年   41篇
  2023年   326篇
  2022年   469篇
  2021年   589篇
  2020年   552篇
  2019年   421篇
  2018年   364篇
  2017年   481篇
  2016年   491篇
  2015年   578篇
  2014年   892篇
  2013年   888篇
  2012年   901篇
  2011年   1412篇
  2010年   1051篇
  2009年   1104篇
  2008年   1220篇
  2007年   1277篇
  2006年   1181篇
  2005年   1162篇
  2004年   1049篇
  2003年   905篇
  2002年   765篇
  2001年   604篇
  2000年   400篇
  1999年   378篇
  1998年   274篇
  1997年   274篇
  1996年   220篇
  1995年   209篇
  1994年   180篇
  1993年   144篇
  1992年   106篇
  1991年   85篇
  1990年   70篇
  1989年   61篇
  1988年   55篇
  1987年   22篇
  1986年   31篇
  1985年   29篇
  1984年   27篇
  1983年   17篇
  1982年   11篇
  1981年   12篇
  1980年   8篇
  1979年   10篇
  1978年   7篇
  1977年   16篇
  1961年   5篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
2.
This paper focuses on the design of a 2.3–21 GHz Distributed Low Noise Amplifier (LNA) with low noise figure (NF), high gain (S21), and high linearity (IIP3) for broadband applications. This distributed amplifier (DA) includes S/C/X/Ku/K-band, which makes it very suitable for heterodyne receivers. The proposed DA uses a 0.18 μm GaAs pHEMT process (OMMIC ED02AH) in cascade architecture with lines adaptation and equalization of phase velocity techniques, to absorb their parasitic capacitances into the gate and drain transmission lines in order to achieve wide bandwidth and to enhance gain and linearity. The proposed broadband DA achieved an excellent gain in the flatness of 13.5 ± 0.2 dB, a low noise figure of 3.44 ± 1.12 dB, and a small group delay variation of ±19.721 ps over the range of 2.3–21 GHz. The input and output reflection coefficients S11 and S22 are less than −10 dB. The input compression point (P1dB) and input third-order intercept point (IIP3) are −1.5 dBm and 11.5 dBm, respectively at 13 GHz. The dissipated power is 282 mW and the core layout size is 2.2 × 0.8 mm2.  相似文献   
3.
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.  相似文献   
4.
A Cooper(II) (Cu2+)-nitrogen coordination-crosslinked network is designed in poly(styrene-co-butadiene-co-styrene) (SBS) to change commercial elastomers into advanced soft materials. Herein, ligand groups into SBS molecular chains by the 3,6-di(2-pyridyl)-1,2,4,5-tetrazine (DPT) click reaction are first introduced. The results from fourier transform infrared (FT-IR), 1H-nuclear magnetic resonance, and X-ray photoelectron spectroscopy (XPS) are verified the successful modification of SBS. The DPT-grafted SBS could then coordinate with copper sulfate (CuSO4) to form a Cu2+-nitrogen bond, which is further characterized using FT-IR, XPS, atomic force microscope, scanning electron microscope, and geometric structure calculations. After modifying SBS to form an SBS-DPT/CuSO4 composite (SBS-DPT2-Cu10), the tensile stress is improved from 11.43 to 23.25 MPa, while the elongation at break is remained almost unchanged, and the corresponding toughness is increased from 33.21 to 63.26 MJ m–3. Moreover, the dynamic nature of the Cu2+-nitrogen coordination bonds enables the SBS-DPT/CuSO4 composite to exhibit sustained thermoplastic performance and excellent shape memory behavior under an external thermal stimulus.  相似文献   
5.
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   
6.
《工程爆破》2022,(4):78-84
介绍了在包头市某工程实施管道穿越黄河施工中,采用爆破法处理卡钻的经验。针对深水环境条件及钻杆内径小不宜采用集团装药的条件,确定采用"小直径爆破筒,钻杆内部装药"的爆破方案,阐述了爆破设计及施工注意事项。可供类似工程参考。  相似文献   
7.
Machine learning-based fault detection methods are frequently combined with wavelet transform (WT) to detect an unintentional islanding condition. In contrast to this condition, these methods have long detection and computation time. Thus, selecting a useful signal processing-based approach is required for reliable islanding detection, especially in real-time applications. This paper presents a new modified signal processing-based islanding detection method (IDM) for real-time applications of hydrogen energy-based distributed generators. In the study, a new IDM using a modified pyramidal algorithm approach with an undecimated wavelet transform (UWT) is presented. The proposed method is performed with different grid conditions with the presence of electric noise in real-time. Experimental results show that oscillations in the acquired signal can be reduced by the UWT, and noise sensitivity is lower than other WT-based methods. The non-detection zone is zero and the maximum detection and computational time is also 75 ms at a close power match.  相似文献   
8.
死亡风险预测指根据病人临床体征监测数据来预测未来一段时间的死亡风险。对于ICU病患,通过死亡风险预测可以有针对性地对病人做出临床诊断,以及合理安排有限的医疗资源。基于临床使用的MEWS和Glasgow昏迷评分量表,针对ICU病人临床监测的17项生理参数,提出一种基于多通道的ICU脑血管疾病死亡风险预测模型。引入多通道概念应用于BiLSTM模型,用于突出每个生理参数对死亡风险预测的作用。采用Attention机制用于提高模型预测精度。实验数据来自MIMIC [Ⅲ]数据库,从中提取3?080位脑血管疾病患者的16?260条记录用于此次研究,除了六组超参数实验之外,将所提模型与LSTM、Multichannel-BiLSTM、逻辑回归(logistic regression)和支持向量机(support vector machine, SVM)四种模型进行了对比分析,准确率Accuracy、灵敏度Sensitive、特异性Specificity、AUC-ROC和AUC-PRC作为评价指标,实验结果表明,所提模型性能优于其他模型,AUC值达到94.3%。  相似文献   
9.
Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing (DFOS), high-density electrical resistivity tomography (HD-ERT) and close-range photogrammetry (CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks. Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, real-time and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.  相似文献   
10.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号