首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   13篇
  自动化技术   19篇
  2020年   3篇
  2017年   3篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
以钢铁企业高炉煤气系统这一复杂生产过程为背景, 针对高炉煤气发生量的预测问题, 提出一种基于数据的网络模型预测方法. 鉴于生产数据含噪高的特点, 采用经验模态分解将历史数据分解为若干独立的固有模态函数, 将小尺度函数经低通滤波器自适应去噪后, 再对数据重构以建立预测模型. 在建模过程中提出一种改进的回声状态网络, 通过奇异值分解求取网络输出权值, 克服了线性回归算法出现的病态问题, 提高了模型的预测精度. 现场实际数据预测结果表明所提出方法的有效性, 为制定煤气管网平衡调度方案提供科学的决策支持.  相似文献
2.
回声状态网络及其在图像边缘检测中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
循环神经网络(RNN,也称反馈神经网络)是一种重要的人工神经网络,与前馈神经网络相比具有更好的学习能力和更快的收敛速度,但其隐层结构的设计一直是个难点问题。回声状态网络(ESN)有效地解决了上述问题,相比于以前的循环神经网络,其具有结构独特、稳定性好、学习过程简单快捷等特点。介绍了回声状态网络及其学习方法,将其用于图像的边缘检测中,取得了良好的效果。  相似文献
3.
基于Adaboost算法的回声状态网络预报器   总被引:1,自引:0,他引:1       下载免费PDF全文
把单个回声状态网络(echo state network,ESN)的预测模型作改进,对整体ESN预测精度的提高是有限的.针对以上问题,本文考虑整体ESN.首先利用Adaboost算法提升单个ESN的泛化性能及预测精度,并且根据Adaboost算法的结果,建立一种ESN预报器(Adaboost ESN,ABESN).这个ESN预报器根据拟合误差不断修正训练样本的权重,拟合误差越大,训练样本权重值就越大;因此,它在下一次迭代时,就会侧重在难以学习的样本.把单个ESN的预测模型经过加权,然后按照加法组合在一起,形成最终的ESN预测模型.将该预测模型应用于太阳黑子、Mackey-Glass时间序列的预测研究,仿真结果表明所提出的预测模型在实际时间序列预测领域的有效性.  相似文献
4.
网络流量预测是网络拥塞控制与网络管理的一个重要问题.网络流量时间序列具有时变、非线性特征,导致传统时间序列预测方法预测精度比较低,无法建立精确的预测模型.回声状态网络(echo state network,ESN)在非线性混沌系统预测与建模方面有着良好的性能,非常适合网络流量的预测.为了提高网络流量的预测精度,提出一种基于遗传算法(genetic algorithm,GA)优化回声状态网络的网络流量非线性预测方法.首先利用回声状态网络对网络流量进行预测;然后利用遗传算法对回声状态网络预测模型中的储备池参数进行优化,提高预测模型的预测精度.通过中国联合网络通信公司辽宁分公司采集的实际网络流量数据进行了仿真验证.与差分自回归滑动平均模型(auto regressive integrated moving average,ARIMA)、Elman神经网络以及最小二乘支持向量机(least square support vector machine,LSSVM)这3种常见预测模型进行了对比,仿真结果表明提出的方法具有更高的预测精度与更小的预测误差,更能刻画网络流量复杂的变化特点.  相似文献
5.
提出一种利用回声状态网络(echo state network,ESN)建立复杂分布参数系统模型的灰箱建模方法。此建模方法可以充分利用已知机理模型的结构信息和回声状态网络的逼近能力,可更好地描述和解释出系统各变量之间的因果关系,使模型的"灰箱"化程度更高。首先,根据系统方程和先验知识将初始系统特征团引入ESN储备池中,赋予网络节点实际物理意义,并以此建立结构逼近神经网络模型;然后,通过逐步回归分析方法,结合递归最小二乘算法选择最优系统特征团,并对网络结构进行优化,建立起描述系统特性关系的灰箱模型。本文以实验室规模的管式聚合反应过程作为实验对象,建立以温度分布为输出的数学模型,结果表明所提出的灰箱建模方法行之有效。  相似文献
6.
A novel self-learning optimal control method for a class of discrete-time nonlinear systems is proposed based on iteration adaptive dynamic programming(ADP)algorithm.It is proven that the iteration costate functions converge to the optimal one,and a detailed convergence analysis of the iteration ADP algorithm is given.Furthermore,echo state network(ESN)architecture is used as the approximator of the costate function for each iteration.To ensure the reliability of the ESN approximator,the ESN mean square training error is constrained in the satisfactory range.Two simulation examples are given to demonstrate that the proposed control method has a fast response speed due to the special structure and the fast training process.  相似文献
7.
为了研究具有模型不确定性的机器人操作手的轨迹跟踪控制,采用一种新的递归神经网络——回声状态网络(ESN)设计了动态控制器.采用PID控制器补偿ESN网络的逆建模误差,并在网络训练过程中加入白噪声项,以保证动态系统的稳定性.最后针对两关节机械手的轨迹跟踪控制问题进行了数值仿真,仿真结果表明了该方法的有效性.  相似文献
8.
伦淑娴  胡海峰 《自动化学报》2017,43(7):1160-1168
为了提升泄露积分型回声状态网(Leaky integrator echo state network,Leaky-ESN)的性能,提出利用罚函数内点法优化Leaky-ESN的全局参数,如泄漏率、内部连接权矩阵谱半径、输入比例因子等,这克服了通过反复试验法选取参数值而降低了Leaky-ESN模型的优越性和性能.Leaky-ESN的全局参数必须保障回声状态网满足回声状态特性,因此它们之间存在不等式约束条件.有学者提出利用随机梯度下降法来优化内部连接权矩阵谱半径、输入比例因子、泄露率三个全局参数,一定程度上提高了Leaky-ESN的逼近精度.然而,随机梯度下降法是解决无约束优化问题的基本算法,在利用随机梯度下降法优化参数时,没有考虑参数必须满足回声特性的约束条件(不等式约束条件),致使得到的参数值不是最优解.由于罚函数内点法可以求解具有不等式约束的最优化问题,应用范围广,收敛速度较快,具有很强的全局寻优能力.因此,本文提出利用罚函数内点法优化Leaky-ESN的全局参数,并以时间序列预测为例,检验优化后的Leaky-ESN的预测性能,仿真结果表明了本文提出方法的有效性.  相似文献
9.
伦淑娴  林健  姚显双 《自动化学报》2015,41(9):1669-1679
为了提高时间序列的预测精度, 提出了利用改进的小世界网络优化泄露积分型回声状态网(Leaky-integrator echo state network, Leaky ESN)的时间序列预测方法. 首先提出一个改进型小世界网络, 其加边概率是节点间距离的负指数函数. 然后, 利用加边概率直接表示Leaky ESN储备池两个神经节点的连接权值, 取值范围为[0,1], 表征了节点间的连接程度. 利用这个新型小世界网络改进Leaky ESN的储备池神经节点的连接方式, 有目的地实现了稀疏连接, 减小了Leaky ESN储备池随机稀疏连接的盲目性, 提高了储备池的适应性.最后, 利用改进的Leaky ESN预测典型的非线性时间序列, 并利用Matlab仿真软件验证了本文提出方法的有效性. 与Leaky ESN相比, 本文提出的方法具有更高的预测精度和更短的训练时间.  相似文献
10.
韩敏  任伟杰  许美玲 《自动化学报》2014,40(11):2428-2435
针对回声状态网络存在的病态解以及模型规模控制问题,本文提出一种基于L1范数正则化的改进回声状态网络.该方法通过在目标函数中添加L1范数惩罚项,提高模型求解的数值稳定性,同时借助于L1范数正则化的特征选择能力,控制网络的复杂程度,防止出现过拟合.对于L1范数正则化的求解,采用最小角回归算法计算正则化路径,通过贝叶斯信息准则进行模型选择,避免估计正则化参数.将模型应用于人造数据和实际数据的时间序列预测中,仿真结果证明了本文方法的有效性和实用性.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号