首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   2篇
  自动化技术   3篇
  2010年   1篇
  2009年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
神经模糊系统中模糊规则的优选   总被引:5,自引:0,他引:5  
贾立  俞金寿 《控制与决策》2002,17(3):306-309,314
提出一种基于两级聚类算法的自组织神经模糊系统,该系统采用两级聚类算法(改进的最近邻域聚类算法和Gustafson-Kessel模糊聚类算法)对输入/输出数据进行模糊聚类,并由模糊聚类的划分熵确定最优划分,建立模糊模型,模型精度可由梯度下降法进一步提高。仿真结果表明,这种神经模糊系统具有结构简单、规则数少、学习速度快以及建模精度高等特点。  相似文献
2.
基于目标函数的模糊模型一体化建模   总被引:1,自引:0,他引:1       下载免费PDF全文
基于模糊集合的模糊模型, 利用模糊推理规则描述复杂、病态、非线性系统是一种有效方法. 本文提出了利用目标函数确定非线性系统的结构和参数的方法. 首先, 通过Gustafson-Kessel(GK)模糊聚类确定模型结构. 然后, 通过目标函数与参数估计一起进行递推计算, 进而实现对模糊模型结构简化, 删除冗余规则. 结构确定过程中采用了UD矩阵分解方法, 大大降低了计算量. 仿真结果证明了提出方法的有效性.  相似文献
3.
提出了一种利用MGS(modified Gram-Schmidt)算法建立模糊ARMAX模型的方法, 给出了基于MGS算法的模型结构和参数辨识的一体化方法. 利用MGS正交变换对通过GK模糊聚类的聚类结果进行变换, 确定对模型贡献大的规则, 删除对模型贡献小的规则, 同时对模型中的参数进行估计. 本文提出的方法能够实现模糊模型的结构和参数的优化. 仿真结果表明, 本文提出的方法能够建立非线性系统的模糊ARMAX模型.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号