首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  国内免费   75篇
  完全免费   603篇
  自动化技术   1114篇
  2020年   1篇
  2019年   4篇
  2018年   14篇
  2017年   26篇
  2016年   26篇
  2015年   60篇
  2014年   80篇
  2013年   68篇
  2012年   158篇
  2011年   157篇
  2010年   131篇
  2009年   112篇
  2008年   117篇
  2007年   69篇
  2006年   35篇
  2005年   19篇
  2004年   17篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有1114条查询结果,搜索用时 93 毫秒
1.
基于MATLAB的粒子群优化算法及其应用   总被引:65,自引:2,他引:63  
该文探讨了粒子群优化算法及其改进,并提出了算法的离线性能评估准则和在线性能评估准则。在此基础上重点研究了MATLAB环境中粒子群优化算法的仿真方法,主要包括数据结构设计、参数编码以及进化信息跟踪等关键内容。最后,对典型的多峰函数优化试验表明:作者开发的粒子群优化算法结构简单,运行快,是一个通用有效的优化工具。  相似文献
2.
粒子群优化算法模型分析   总被引:33,自引:2,他引:31       下载免费PDF全文
粒子群优化算法在优化问题中体现出良好的性能,但目前还没有对其运动特性,尤其是参数的选择与当粒子群体陷入局部极值点导致的早熟收敛情况的详细分析.分析了PSO算法中的三种粒子模型(Gbest,Pbest,Commom模型)的运动特性,给出了Gbest模型和Pbest 模型在没有新息获取时,单信息条件下的最大搜索空间.进一步证明了在减少了Lipschitz条件约束的条件下,Common模型渐进稳定的充分条件,将算法中惯量因子的取值范围扩大到 (-1,1),并从物理上进行了解释.  相似文献
3.
基于粒子群算法的移动机器人路径规划   总被引:32,自引:1,他引:31  
秦元庆  孙德宝  李宁  马强 《机器人》2004,26(3):222-225
提出一种分步路径规划方法,首先采用链接图建立机器人工作空间模型,用Dijkstra算法求得链接图 最短路径;然后用粒子群算法对此路径进行优化,得到全局最优路径.仿真结果表明:所提方法简便可行,能够满足 移动机器人导航的高实时性要求,是机器人路径规划的一个较好方案.􀁱  相似文献
4.
基于粒子群优化算法的移动机器人全局路径规划   总被引:24,自引:0,他引:24  
孙波  陈卫东  席裕庚 《控制与决策》2005,20(9):1052-1055,1060
提出了一种基于粒子群优化算法的移动机器人全局路径规划方法.该方法首先进行环境地图建模,通过坐标变换在路径的起点与终点之间建立新地图,然后利用粒子群优化算法获得一条全局最优路径.该方法模型简单,算法复杂度低,收敛速度快,而且模型不依赖于障碍物的形状.仿真实验证实了该方法的有效性.  相似文献
5.
一种高速收敛粒子群优化算法   总被引:16,自引:2,他引:14  
针对粒子群优化算法早熟问题,提出一种克服早熟的高速收敛粒子群算法.该算法首先采用混沌序列初始化粒子位置,以增强搜索多样性;其次,在算法中嵌入有效判断早熟停滞的方法,一旦检索到早熟迹象,便随机地选择最优解任意一维的分量值,用一个随机值取代它,以扰乱粒子的当前搜索轨迹,使其跳出局部最优.大量仿真实验表明,大多数连续函数的寻优过程只需用几个粒子、迭代几十次便能完成,可实现全局寻优过程的高速收敛.  相似文献
6.
基于改进粒子群算法的PID参数优化方法研究   总被引:13,自引:1,他引:12  
针对标准粒子群算法的一些缺点进行了改进,提出了MWPSO优化算法,即Multi-Weight PSO。将MWPSO优化算法用几个标准测试函数进行测试,结果表明该算法优化结果的指标参数比标准PSO算法有所提高。在此基础上,用MWPSO优化算法对PID控制中的参数进行优化并将结果与遗传算法的结果进行比较,优化结果在保证PID控制稳定性基础上提高了PID控制的精度,且编码简单、易于实现。具有较好的应用前景。  相似文献
7.
一种惯性权重动态调整的新型粒子群算法   总被引:13,自引:1,他引:12  
在简要介绍基本PSO算法的基础上,提出了一种根据不同粒子距离全局最优点的距离对基本PSO算法的惯性权重进行动态调整的新型粒子群算法(DPSO),并对新算法进行了描述。以典型优化问题的实例仿真验证了DPSO算法的有效性。  相似文献
8.
云自适应粒子群算法   总被引:12,自引:3,他引:9       下载免费PDF全文
文中提出了云自适应粒子群优化(CAPSO)算法,根据粒子适应度值把种群分为三个子群,分别采用不同的惯性权重生成策略,由X条件云发生器自适应调整普通子群粒子的惯性权重,由于云模型云滴具有随机性和稳定倾向性特点,使惯性权重既具有传统的趋势性,满足快速寻优能力,又具有随机性,在提高收敛速度和保持种群多样性之间做了一个很好的权衡。通过典型函数优化实验表明,与标准粒子群算法相比,CAPSO具有较高的计算精度和较快的收敛速度。  相似文献
9.
具有随机惯性权重的PSO算法   总被引:10,自引:0,他引:10  
微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种优化算法,当前,在相关领域内,倍受国内外学者关注。该文在分析基本PSO算法的速度进化方程的基础上,提出一种能更好描述微粒进化过程的速度方程,由其引出一种具有随机惯性权重的PSO算法;通过五个典型测试函数的仿真实验,验证了其可行性,同时也表明具有随机惯性权重的PSO算法较具有线性递减惯性权重的PSO算法在收敛速度和全局收敛性方面有明显提高。  相似文献
10.
自适应扩散混合变异机制微粒群算法   总被引:10,自引:0,他引:10       下载免费PDF全文
为了避免微粒群算法(particle swarm optimization,简称PSO)在全局优化中陷入局部极值,分析了标准PSO算法早熟收敛的原因,提出了自适应扩散混合变异机制微粒群算法(InformPSO).结合生物群体信息扩散的习性,设计了一个考虑微粒分布和迭代次数的函数,自适应调整微粒的"社会认知"能力,提高种群的多样性;模拟了基因自组织和混沌进化规律,引入克隆选择使群体最佳微粒gBest实现遗传微变、局部增值,具有变异确定性;利用Logistic序列指导gBest随机漂移,进一步增强逃离局部极值能力.基于种群的随机状态转移过程,证明了新算法具有全局收敛性.与其他几种PSO变种相比,复杂基准函数仿真优化结果表明,新算法收敛速度快,求解精度高,稳定性好,能够有效抑制早熟收敛.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号