首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30273篇
  免费   3596篇
  国内免费   2764篇
电工技术   2188篇
技术理论   1篇
综合类   3881篇
化学工业   2320篇
金属工艺   2106篇
机械仪表   2289篇
建筑科学   845篇
矿业工程   409篇
能源动力   482篇
轻工业   808篇
水利工程   224篇
石油天然气   383篇
武器工业   361篇
无线电   3663篇
一般工业技术   4864篇
冶金工业   560篇
原子能技术   248篇
自动化技术   11001篇
  2024年   46篇
  2023年   360篇
  2022年   595篇
  2021年   778篇
  2020年   802篇
  2019年   897篇
  2018年   811篇
  2017年   1110篇
  2016年   1150篇
  2015年   1361篇
  2014年   1865篇
  2013年   2198篇
  2012年   2069篇
  2011年   2289篇
  2010年   1796篇
  2009年   2021篇
  2008年   1829篇
  2007年   2130篇
  2006年   1802篇
  2005年   1570篇
  2004年   1357篇
  2003年   1131篇
  2002年   908篇
  2001年   799篇
  2000年   700篇
  1999年   606篇
  1998年   565篇
  1997年   444篇
  1996年   411篇
  1995年   406篇
  1994年   338篇
  1993年   287篇
  1992年   232篇
  1991年   190篇
  1990年   160篇
  1989年   129篇
  1988年   100篇
  1987年   62篇
  1986年   62篇
  1985年   53篇
  1984年   42篇
  1983年   37篇
  1982年   37篇
  1981年   23篇
  1980年   18篇
  1979年   9篇
  1978年   10篇
  1977年   10篇
  1976年   8篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(18):25849-25857
The continuous Nextel? 720 fiber-reinforced zirconia/alumina ceramic matrix composites (CMCs) were prepared by slurry infiltration process and precursor infiltration pyrolysis (PIP) process. The introduction of submicron zirconia powders into the aqueous slurry was optimized to offer comprehensively good sintering activity, high thermal resistance and good mechanical properties for the CMCs. Meanwhile, the zirconia and alumina preceramic polymers were used to strengthen the porous ceramic matrix through the PIP process. The final CMC sample achieved a high flexural strength of 200 MPa after one infiltration cycle of alumina preceramic polymer and thermal treatment at 1150 °C for 2 h. The flexural strength retention of the improved CMC sample was 104% and 89% respectively after thermal exposure at 1100 °C and 1200 °C for 24 h.  相似文献   
2.
《Ceramics International》2022,48(6):8069-8080
Homogeneous thin films of Molybdenum oxide (MoO3) were grown on quartz and glass substrates using the thermal evaporation method. XRD results showed that the MoO3 powder has a polycrystalline structure with an orthorhombic crystal system whereas the MoO3 thin films have amorphous nature. SEM images showed that the MoO3 thin films have a nearly uniform surfaces with worm-like shape grains. The film thickness influences on the linear and nonlinear optical characteristics of MoO3 thin films that were examined using spectrophotometric measurements and from which, the linear optical constants of the MoO3 thin films were estimated. The electronic transition type was determined as a direct allowed one. The values of the optical band gap were obtained to be in the range of 3.88–3.72 eV. The dispersion parameters, third-order nonlinear optical susceptibility, and the nonlinear refractive index of the MoO3 thin films were determined and interpreted in the light of the single oscillator model. The temperature dependence of the DC electrical conductivity and the corresponding conduction mechanism for the MoO3 films were investigated at temperatures ranging from 303 to 463 K.  相似文献   
3.
本文介绍“风险矩阵法”进行风险分级工作的基本思路,结合水泥厂的生产特点通过危险有害因素辨识,获得危险源分布情况,采用风险矩阵法对风险进行评估,按风险值将风险等级划分为重大风险、较大风险、一般风险和低风险,为水泥生产企业的安全风险分级工作提供参考。  相似文献   
4.
Metal organic frameworks (MOFs) derivatives represented by quasi-MOFs have excellent physical and chemical properties and can be applied for the catalytic combustion of volatile organic compounds (VOCs). In this work, Pd/quasi-Ce-BTC synthesized by simple one-step N2 pyrolysis was applied to the oxidation of toluene, showing excellent toluene catalytic activity (T90 = 175 °C, 30000 mL/(g·h)). Microscopic analyses indicate the formation and interaction of a carbon matrix composite quasi-MOF structure interface. The results show that the amorphous carbon matrix formed during the partial pyrolysis of Ce-BTC significantly improves the adsorption and activation capacity of toluene in the reaction, and constructs a reductive system to maintain high concentrations of Ce3+ and Pd0, which can facilitate the activation and utilization of oxygen in reaction. Quasi in-situ XPS proves that carbon matrix is indirectly involved in the activation and storage of oxygen, and Pd0 is the crucial active site for the activation of oxygen. Stability and water resistance tests display good stability of Pd/quasi-Ce-BTC. This work provides a potential method for designing quasi-MOF catalysts towards VOCs effective abatement.  相似文献   
5.
《Ceramics International》2022,48(6):7748-7758
Micromechanics model, finite element (FE) simulation of microindentation and machine learning were deployed to predict the mechanical properties of Cu–Al2O3 nanocomposites. The micromechanical model was developed based on the rule of mixture and grain and grain boundary sizes evolution to predict the elastic modulus of the produced nanocomposites. Then, a FE model was developed to simulate the microindentation test. The input for the FE model was the elastic modulus that was computed using the micromechanics model and wide range of yield and tangent stresses values. Finally, the output load-displacement response from the FE model, the elastic modulus, the yield and tangent strengths used for the FE simulations, and the residual indentation depth were used to train the machine learning model (Random vector functional link network) for the prediction of the yield and tangent stresses of the produced nanocomposites. Cu–Al2O3 nanocomposites with different Al2O3 concentration were manufactured using insitu chemical method to validate the proposed model. After training the model, the microindentation experimental load-displacement curve for Cu–Al2O3 nanocomposites was fed to the machine learning model and the mechanical properties were obtained. The obtained mechanical properties were in very good agreement with the experimental ones achieving 0.99 coefficient of determination R2 for the yield strength.  相似文献   
6.
Our goal was to examine the anticancer effects of piperine against the resistant human ovarian cancer cells and to explore the molecular mechanisms responsible for its anticancer effects. Our study used drug-sensitive ovarian cancer cell line W1 and its sublines resistant to paclitaxel (PAC) and topotecan (TOP). We analyzed the cytotoxic effect of piperine and cytostatic drugs using an MTT assay. The impact of piperine on protein expression was determined by immunofluorescence and Western blot. We also examined its effect on cell proliferation and migration. We noticed a different level of piperine resistance between cell lines. Piperine increases the cytotoxic effect of PAC and TOP in drug-resistant cells. We observed an increase in PTPRK expression correlated with decreased pTYR level after piperine treatment and downregulation of P-gp and BCRP expression. We also noted a decrease in COL3A1 and TGFBI expression in investigated cell lines and increased COL3A1 expression in media from W1PR2 cells. The expression of Ki67 protein and cell proliferation rate decreased after piperine treatment. Piperine markedly inhibited W1TR cell migration. Piperine can be considered a potential anticancer agent that can increase chemotherapy effectiveness in cancer patients.  相似文献   
7.
In recent years, the light field (LF) as a new imaging modality has attracted wide interest. The large data volume of LF images poses great challenge to LF image coding, and the LF images captured by different devices show significant differences in angular domain. In this paper we propose a view prediction framework to handle LF image coding with various sampling density. All LF images are represented as view arrays. We first partition the views into reference view (RV) set and intermediate view (IV) set. The RVs are rearranged into a pseudo sequence and directly compressed by a video encoder. Other views are then predicted by the RVs. To exploit the four dimensional signal structure, we propose the linear approximation prior (LAP) to reveal the correlation among LF views and efficiently remove the LF data redundancy. Based on the LAP, a distortion minimization interpolation (DMI) method is used to predict IVs. To robustly handle the LF images with different sampling density, we propose an Iteratively Updating depth image based rendering (IU-DIBR) method to extend our DMI. Some auxiliary views are generated to cover the target region and then the DMI calculates reconstruction coefficients for the IVs. Different view partition patterns are also explored. Extensive experiments on different types LF images also valid the efficiency of the proposed method.  相似文献   
8.
Ceramic matrix composites (CMC) are highly required in many fields of science and engineering. However, the CMC parts always have poor surface finish. This study attempts to improve cutting performance of CMC material by combing the advantages of ultrasonic assisted cutting and diamond wire sawing. Cutting force, surface roughness, machined edge and tool wear are analyzed based on experimental results. It shows that the oscillatory movement of tool edges provides positive effect on particle ejection and residual material reduction. Ductile chip formation can be achieved due to the small tip radius of grits. Obvious decrease in cutting force, surface roughness and tool wear are obtained. Moreover, burrs, fuzzing and fracture are reduced. Meanwhile, both the surface characteristics and shape accuracy are significantly improved. These results provide a valuable basis for application of ultrasonic assisted wire sawing and understanding of CMC cutting mechanisms.  相似文献   
9.
The production of ceramic matrix composites (CMC) based on C/C-SiC is still very cost-intensive and therefore only economical for a few applications. The fabrication of the preforms involves many costs that need to be reduced. In this work, the shaping of the CFRP-preforms is realized by thermoset injection molding, which enables large-scale production. The polymeric matrix used is a multi-component matrix consisting of novolak resin, curing agent and lubricant. Six millimeter chopped carbon fiber with a proportion of 50 wt.% were used as a reinforcement. These ingredients are processed by an industrial equipment for compounding and injection molding in order to manufacture a CFRP demonstrator representing a brake disc. Test specimens are cut out of the demonstrator in different directions in order to investigate influences of flow direction and weld lines on microstructural and mechanical properties. Afterward, the CFRP samples were converted to C/C-SiC composites by the liquid silicon infiltration process. The article addresses the flow behavior of the compound during the injection molding and the building of the weld lines in the demonstrator. In addition, results of the directional dependence of the microstructural and mechanical properties within the fabricated disc in the different production steps are presented.  相似文献   
10.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号