首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282728篇
  免费   37738篇
  国内免费   29911篇
电工技术   32348篇
技术理论   17篇
综合类   24647篇
化学工业   40830篇
金属工艺   10765篇
机械仪表   16026篇
建筑科学   13760篇
矿业工程   5202篇
能源动力   8925篇
轻工业   14688篇
水利工程   4857篇
石油天然气   7030篇
武器工业   2958篇
无线电   48552篇
一般工业技术   25536篇
冶金工业   5886篇
原子能技术   3622篇
自动化技术   84728篇
  2024年   641篇
  2023年   4769篇
  2022年   8559篇
  2021年   10745篇
  2020年   10724篇
  2019年   8731篇
  2018年   7666篇
  2017年   10019篇
  2016年   10541篇
  2015年   12704篇
  2014年   15533篇
  2013年   17946篇
  2012年   21998篇
  2011年   24212篇
  2010年   17488篇
  2009年   17722篇
  2008年   19252篇
  2007年   21576篇
  2006年   19965篇
  2005年   17221篇
  2004年   14506篇
  2003年   11987篇
  2002年   9113篇
  2001年   7187篇
  2000年   5699篇
  1999年   4700篇
  1998年   3685篇
  1997年   2952篇
  1996年   2465篇
  1995年   2083篇
  1994年   1736篇
  1993年   1299篇
  1992年   999篇
  1991年   758篇
  1990年   635篇
  1989年   478篇
  1988年   361篇
  1987年   220篇
  1986年   200篇
  1985年   263篇
  1984年   220篇
  1983年   167篇
  1982年   221篇
  1981年   112篇
  1980年   101篇
  1979年   43篇
  1978年   18篇
  1977年   24篇
  1976年   16篇
  1959年   24篇
排序方式: 共有10000条查询结果,搜索用时 141 毫秒
1.
针对目前大多数人脸识别算法参数多、计算量大,难以部署到移动端和嵌入式设备中的问题,提出了一种基于改进MobileFaceNet的人脸识别方法。通过对MobileFaceNet模型结构的调整,将bottleneck模块优化为sandglass模块,改良深度卷积和逐点卷积的相对位置,适当增大sandglass模块的输出通道数,从而减少特征压缩时的信息丢失,增强人脸空间特征的提取。实验结果表明:改进后的方法在LFW测试数据集上准确率达99.15%,模型大小和计算量分别仅为原算法的61%和45%,验证了所提方法的有效性。  相似文献   
2.
Recent generative adversarial networks (GANs) have yielded remarkable performance in face image synthesis. GAN inversion embeds an image into the latent space of a pretrained generator, enabling it to be used for real face manipulation. However, current inversion approaches for real faces suffer the dilemma of initialization collapse and identity loss. In this paper, we propose a hierarchical GAN inversion for real faces with identity preservation based on mutual information maximization. We first use a facial domain guaranteed initialization to avoid the initialization collapse. Furthermore, we prove that maximizing the mutual information between inverted faces and their identities is equivalent to minimizing the distance between identity features from inverted and original faces. Optimization for real face inversion with identity preservation is implemented on this mutual information-maximizing constraint. Extensive experimental results show that our approach outperforms state-of-the-art solutions for inverting and editing real faces, particularly in terms of face identity preservation.  相似文献   
3.
Sandstorm is a meteorological phenomenon common in arid and semi-arid regions. A sandstorm can carry large volumes of sand unexpectedly, which leads to severe color deviations and significantly degraded visibility when an image is taken in such a scenario. However, existing image enhancement methods cannot enhance sandstorm images well due to the challenging degradations and the scarcity of sandstorm training data. In this paper, we propose a Transformer with rotary position embedding to perform sandstorm image enhancement via building multi-scale and multi-patch dependencies. Our key insights in this work are 1) a multi-scale Transformer can globally eliminate the color deviations of sandstorm images via aggregating global information, 2) a multi-patch Transformer can recover local details well via learning the spatial variant degradations, and 3) a U-shape Transformer with rotary position embedding as the core unit of multi-scale and multi-patch Transformer can effectively build the long-range dependencies. We also contribute a real-world Sandstorm Image Enhancement (SIE) dataset including 1,400 sandstorm images with different degrees of degradations and various scenes. Experiments performed on synthetic images and real-world sandstorm images demonstrate that our proposed method not only obtains visually pleasing results but also outperforms state-of-the-art methods qualitatively and quantitatively.  相似文献   
4.
夏敏浩  赵万剑  王骏 《中州煤炭》2022,(7):189-194,200
为了提高配电网差异化节能降耗效果,解决现有潜力评估方法存在的应用性能差的问题,提出碳中和背景下配电网差异化节能降耗潜力优化评估方法。根据配电网的空间结构,构建相应的等值电路模型。在该模型下,从设备损耗和运行附加损耗2个方面计算配电网的损耗量。根据损耗量计算结果,确定配电网差异化碳中和节能降耗方式。从静态和动态2个角度设置潜力评估指标,通过指标数据处理、指标权重求解等步骤,得出配电网差异化节能降耗潜力的综合量化评估结果。将设计潜力评估方法应用到配电网的差异化节能降耗改造工作中,能够有效降低配电网的实际线损量、降低区域损耗费用,并具有较高的应用价值。  相似文献   
5.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
6.
In a narrow channel, the apparent relative viscosity of a suspension with finite-size particles is strongly dependent on its microscopic particle arrangement. Relative viscosity increases when suspended particles flow near the channel wall; thus, a suspension in a narrow channel does not always exhibit the same rheological properties even if the concentration is the same. In this study, we focus on the inertia and concentration of particles in a narrow channel and consider their effects on the microscopic particle arrangement and macroscopic suspension rheology. Two-dimensional pressure-driven suspension flow simulations were performed using a two-way coupling scheme, and normalized particle density distribution (PDD) were implemented to consider their particle arrangements. The results demonstrated that the velocity profiles for the particle suspension were changed by the Reynolds number and particle concentration because of the interactions between particles according to the power-law index. These changes affected the particle equilibrium positions in the channel, and the subsequent changes in solvent layer thickness caused changes in the macroscopic apparent viscosity. The behavior of microscopic particles played important roles in determining macroscopic rheology. Thus, we have confirmed that a normalized PDD can be used to estimate and assess the macroscopic rheology of a suspension.  相似文献   
7.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
8.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
9.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
10.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号