首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2433篇
  免费   419篇
  国内免费   43篇
电工技术   1085篇
综合类   100篇
化学工业   67篇
金属工艺   7篇
机械仪表   72篇
建筑科学   138篇
矿业工程   5篇
能源动力   898篇
轻工业   22篇
水利工程   13篇
石油天然气   11篇
武器工业   1篇
无线电   256篇
一般工业技术   73篇
冶金工业   9篇
原子能技术   3篇
自动化技术   135篇
  2024年   4篇
  2023年   52篇
  2022年   109篇
  2021年   139篇
  2020年   109篇
  2019年   94篇
  2018年   93篇
  2017年   168篇
  2016年   195篇
  2015年   171篇
  2014年   243篇
  2013年   193篇
  2012年   237篇
  2011年   266篇
  2010年   139篇
  2009年   110篇
  2008年   93篇
  2007年   86篇
  2006年   87篇
  2005年   50篇
  2004年   40篇
  2003年   46篇
  2002年   22篇
  2001年   43篇
  2000年   13篇
  1999年   12篇
  1998年   27篇
  1997年   21篇
  1996年   12篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1987年   2篇
排序方式: 共有2895条查询结果,搜索用时 15 毫秒
1.
The realization of dc-dc converters performs a vital function in exploiting renewable energy sources such as solar photovoltaic (PV) and fuel cell applications. This paper demonstrates a single-switch unidirectional buck-boost dc-dc converter for continuous power flow control, excluding the hybrid switched-capacitor. The proposed converter utilizes a limited number of passive components, only four diodes and three inductors required, in addition to six capacitors. The converter can operate at a wide input voltage range with continues input current. The converter has experimented under real-time conditions with 660 W PV system. The obtained efficiency ranges from 93% to 98%. Furthermore, the converter has interfaced with 550 W fuel cell operated under different fuel pressure. The realized efficiency ranges from 91% to 97%. The maximum measured inductance current ripple is limited to under 0.70 A in both scenarios, whereas 0.16 V is the maximum output voltage ripple.  相似文献   
2.
This work aims to improve the existing monitoring systems MS for two grid-connected PV stations GCPVS of URERMS ADRAR, to eliminate its limitations. This improvement consists of developing an MS which is used for two PV stations with different configurations. This MS contains new LabVIEW-based monitoring software for visualizing real-time measured data and evaluating GCPVS performance. In addition, it illustrates the 2D and 3D real-time relationships of PV system parameters, which allow us to understand the dynamic behavior of PV system components. This developed monitoring software synchronizes also the various data acquisition units DAU of GCPVS, allowing simultaneous data access.To perform a reliable performance analysis and a comparative study of different GCPVS based on accurate measurements, the sensor's calibration is performed with its DAU. The MS autonomy is ensured by integrating developed PV-UPS. A graphical user interface is provided for the evaluation of PV-UPS performance.  相似文献   
3.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   
4.
The use of photovoltaic energy (PV) for the production of hydrogen by using autonomous modular self-regulated systems is studied. Results are compared with those obtained for controlled systems. It was proved that for small and low-cost applications, it is possible to eliminate any control system with yields as high as 91.2% in the PV-electrolyzer interface for a sunny day. Self-regulated systems are thus an excellent, safe, cheap and environmentally friendly alternative for applications in isolated sites, especially in emerging countries.  相似文献   
5.
This work presents a complete bond graph modeling of a hybrid photovoltaic-fuel cell-electrolyzer-battery system. These are multi-physics models that will take into account the influence of temperature on the electrochemical parameters. A bond graph modeling of the electrical dynamics of each source will be introduced. The bond graph models were developed to highlight the multi-physics aspect describing the interaction between hydraulic, thermal, electrochemical, thermodynamic, and electrical fields. This will involve using the most generic modeling approach possible for managing the energy flows of the system while taking into account the viability of the system. Another point treated in this work is to propose. In this work, a new strategy for the power flow management of the studied system has been proposed. This strategy aims to improve the overall efficiency of the studied system by optimizing the decisions made when starting and stopping the fuel cell and the electrolyzer. It was verified that the simulation results of the proposed system, when compared to simulation results presented in the literature, that the hydrogen demand is increased by an average of 8%. The developed management algorithm allows reducing the fuel cell degradation by 87% and the electrolyzer degradation by 65%. As for the operating time of the electrolyzer, an increment of 65% was achieved, thus improving the quality of the produced hydrogen. The Fuel Cell's running time has been decreased by 59%. With the ambition to validate the models proposed and the associated commands, the development of this study gave rise to the creation of an experimental platform. Using this high-performance experimental platform, experimental tests were carried out and the results obtained are compared with those obtained by simulation under the same metrological conditions.  相似文献   
6.
Agent-based modeling (ABM) techniques for studying human-technical systems face two important challenges. First, agent behavioral rules are often ad hoc, making it difficult to assess the implications of these models within the larger theoretical context. Second, the lack of relevant empirical data precludes many models from being appropriately initialized and validated, limiting the value of such models for exploring emergent properties or for policy evaluation. To address these issues, in this paper we present a theoretically-based and empirically-driven agent-based model of technology adoption, with an application to residential solar photovoltaic (PV). Using household-level resolution for demographic, attitudinal, social network, and environmental variables, the integrated ABM framework we develop is applied to real-world data covering 2004–2013 for a residential solar PV program at the city scale. Two applications of the model focusing on rebate program design are also presented.  相似文献   
7.
Traditional maximum power point tracking (MPPT) methods can hardly find global maximum power point (MPP) because output characteristics curve of photovoltaic (PV) array may have multi local maximum power points in irregular shadow, and thus easily fall into the local maximum power point. To address this drawback, Considering that sliding mode variable structure (SMVS) control strategy have such advantages as simple structure, fast response and strong robustness, and P&O method have the advantages of simple principle and convenient implementation, so a new algorithm combining SMVS control method and P&O method is proposed, besides, PI controller is applied to reduce system chattering caused by switching sliding surface. It is applied to MPPT control of PV array in irregular shadow to solve the problem of multi-peak optimization in partial shadow. In order to verity the rationality of the proposed algorithm, the experimental circuit is built, which achieves MPPT control by means of the proposed algorithm and P&O method. The experimental results show that compared with the traditional P&O algorithm, the proposed algorithm can fast track the global MPP, tracking speed increases by 60% and the relative error decreased by 20%. Moreover, the system becomes more stable near the MPP, the fluctuations of output power is greatly reduced, and thus make full use of solar energy.  相似文献   
8.
基于闭环磁通门技术的传感器广泛应用在测量大电流中的小剩余电流以及噪声共模电流。这类传感器的精度以及对大电流的隔离能力使之成为漏电流检测的最优方案,但通常缺点是成本昂贵且体积庞大。本文介绍了一种新型小尺寸且利用霍尔闭环技术对太阳能系统中的漏电流进行测量的传感器:新一代的LDSR产品。  相似文献   
9.
The novel solar-wind integrated system has been firstly used for hydrogen production in literature with validating theoretical, simulated and experimental studies. This integrated system consists of two main parts; solar-assisted wind turbine and alkaline electrolysis cell.In the first part of this system, the semi-flexible PV panels are smoothly integrated on the vertical axis wind turbine blade. This is a unique design in literature, unlike the hybrid systems that include wind turbines and solar PV panels in published literature. The production and testing of the hybrid integrated system in a single structure were performed both in laboratory conditions and also the system was set up the roof of ATU (Adana Alparslan Turkes Science and Technology University) in Adana. The second part includes hydrogen production via alkaline electrolysis system. The cathodes consist of nickel-coated copper (Cu/Ni) and nickel-vanadium binary coated copper (Cu/NiV), that was produced via electrodeposition technique by self-supporting. The performance of electrodes was compared in 1 M KOH solution via I–V behavior, electrochemical impedance spectroscopy, and long term cathodic polarization analysis. Results showed that polarization resistance was decreased almost 4 times by NiV when comparing the Ni. The surface inhomogeneity values were 0.91 and 0.81 for Cu/Ni and Cu/NiV respectively. The hydrogen gas evolved at the cathodes was also measured and higher volumes were detected for NiV binary coating.  相似文献   
10.
The performance of solar photovoltaic-thermoelectric generation hybrid system (PV-TGS) and solar photovoltaic-thermoelectric cooling hybrid system (PV-TCS) under different conditions were theoretically analysed and compared. To test the practicality of these two hybrid systems, the performance of stand-alone PV system was also studied. The results show that PV-TGS and PV-TCS in most cases will result in the system with a better performance than stand-alone PV system. The advantage of PV-TGS is emphasised in total output power and conversion efficiency which is even poorer in PV-TCS than that in stand-alone PV system at the ambient wind speed uw being below 3 m/s. However, PV-TCS has obvious advantage on lowering the temperature of PV cell. There is an obvious increase in tendency on the performance of PV-TGS and PV-TCS when the cooling capacity of two hybrid systems varies from around 0.06 to 0.3?W/K. And it is also proved that not just a-Si in PV-TGS can produce a better performance than the stand-alone PV system alone at most cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号