首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  自动化技术   4篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
移动机器人的概率定位方法研究进展   总被引:8,自引:0,他引:8  
厉茂海  洪炳熔 《机器人》2005,27(4):380-384
综述了近几年来流行的移动机器人基于概率定位的各种方法,对它们的性能进行了分析比较,所有这些方法都应用贝叶斯规则作为理论基础.首先,介绍了位置跟踪广泛应用的卡尔曼滤波方法和在全局定位方面取得一定成功的马尔可夫定位方法.然后,介绍了计算效率更高的粒子滤波定位方法,即蒙特卡洛法,以及最近自适应采样的粒子滤波方法,它比简单的粒子滤波效率更高.最后, 对概率定位方法的关键技术进行了分析,并探讨了未来的发展趋势.  相似文献
2.
被动声传感器网时延概率定位算法   总被引:3,自引:2,他引:1  
声传感器测量目标发出的声波信号存在纯方位量测、时延较大的特点,通过对多个声传感器组网,可以实现对目标的定位和时延校准处理.提出了一种被动声传感器网时延概率定位的综合处理算法.首先,对多个传感器量测数据进行动态选择,选出测向线交角更接近90°的两个传感器量测数据进行交叉定位,获得目标初始位置;其次,进行时延校准处理,并重新确定测向线交角更接近90°的两个传感器量测数据进行交叉定位.获得新的目标初始位置估计;最后,利用概率定位对新的初始位置进行概率修正,进而获得目标较为准确的位置估计,形成航迹.仿真结果表明,此算法具有计算量小,实时性强,定位精度高的特点.  相似文献
3.
We present a method for learning a set of generative models which are suitable for representing selected image-domain features of a scene as a function of changes in the camera viewpoint. Such models are important for robotic tasks, such as probabilistic position estimation (i.e. localization), as well as visualization. Our approach entails the automatic selection of the features, as well as the synthesis of models of their visual behavior. The model we propose is capable of generating maximum-likelihood views, as well as a measure of the likelihood of a particular view from a particular camera position. Training the models involves regularizing observations of the features from known camera locations. The uncertainty of the model is evaluated using cross validation, which allows for a priori evaluation of features and their attributes. The features themselves are initially selected as salient points by a measure of visual attention, and are tracked across multiple views. While the motivation for this work is for robot localization, the results have implications for image interpolation, image-based scene reconstruction and object recognition. This paper presents a formulation of the problem and illustrative experimental results.  相似文献
4.
Localization is one of the fundamental problems in wireless sensor networks (WSNs), since locations of the sensor nodes are critical to both network operations and most application level tasks. Although the GPS based localization schemes can be used to determine node locations within a few meters, the cost of GPS devices and non-availability of GPS signals in confined environments prevent their use in large scale sensor networks. There exists an extensive body of research that aims at obtaining locations as well as spatial relations of nodes in WSNs without requiring specialized hardware and/or employing only a limited number of anchors that are aware of their own locations. In this paper, we present a comprehensive survey on sensor localization in WSNs covering motivations, problem formulations, solution approaches and performance summary. Future research issues will also be discussed.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号