首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38005篇
  免费   4002篇
  国内免费   2535篇
电工技术   4888篇
综合类   3089篇
化学工业   1789篇
金属工艺   1186篇
机械仪表   5650篇
建筑科学   2136篇
矿业工程   1055篇
能源动力   890篇
轻工业   873篇
水利工程   734篇
石油天然气   783篇
武器工业   655篇
无线电   5974篇
一般工业技术   4862篇
冶金工业   1297篇
原子能技术   849篇
自动化技术   7832篇
  2024年   51篇
  2023年   416篇
  2022年   763篇
  2021年   911篇
  2020年   1067篇
  2019年   772篇
  2018年   824篇
  2017年   1291篇
  2016年   1494篇
  2015年   1630篇
  2014年   2406篇
  2013年   2160篇
  2012年   2759篇
  2011年   2951篇
  2010年   2161篇
  2009年   2228篇
  2008年   2321篇
  2007年   2737篇
  2006年   2459篇
  2005年   1985篇
  2004年   1776篇
  2003年   1543篇
  2002年   1242篇
  2001年   1076篇
  2000年   908篇
  1999年   750篇
  1998年   593篇
  1997年   694篇
  1996年   474篇
  1995年   380篇
  1994年   365篇
  1993年   283篇
  1992年   199篇
  1991年   153篇
  1990年   140篇
  1989年   97篇
  1988年   87篇
  1987年   65篇
  1986年   46篇
  1985年   35篇
  1984年   52篇
  1983年   29篇
  1982年   31篇
  1981年   13篇
  1980年   10篇
  1977年   10篇
  1976年   8篇
  1973年   8篇
  1959年   10篇
  1955年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
2.
《Ceramics International》2022,48(24):36835-36844
Molybdate and tungstate with scheelite-type structure are excellent self-luminescent materials, which can be used as ideal hosts for the doping of rare-earth ions. In this study, a series of Eu3+-activated SrAO4 (A = Mo and W) phosphors were successfully synthesized, and their crystal structures, photoluminescence properties, and temperature measurement performance were analyzed in detail. These phosphors were excited by UV light (291 nm and 247 nm, respectively), with clear energy transfer (ET) (MoO42?→Eu3+ or WO42?→Eu3+). According to fluorescence intensity ratio (FIR) and Judd–Ofelt (J–O) theory, compared to SrWO4:0.01Eu3+ phosphor, SrMoO4:0.01Eu3+ phosphor exhibited better thermal stability, with relatively low Sa value (maximum values were 5.082 %K?1 and 20.74 %K?1, respectively), and their Sr values were not significantly different (maximum values were 0.864 %K?1 and 0.83 %K?1, respectively). Sa value was negatively correlated to central asymmetry of Eu3+, but the optimal Sr value tended to be more suitable for central asymmetry of Eu3+. In addition, Eu3+ exhibited stronger central asymmetry as well as covalency of Eu–O bond in SrMoO4. Results reveal that SrMoO4:xEu3+ and SrWO4:xEu3+ can be used for luminescent thermometers.  相似文献   
3.
4.
Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes prediction of pullout interaction coefficient using data driven machine learning regression algorithms. The study primarily focusses on using extreme gradient boosting (XGBoost) method for prediction. A data set containing 220 test results from the literature has been used for training and testing. Predicted results of XGBoost have been compared with the results of random forest (RF) ensemble learning based algorithm. The predictions of XGBoost model indicates 85% accuracy and that of RF model shows 77% accuracy, indicating significantly superior and robust prediction through XGBoost above RF model. The importance analysis indicates that normal stress is the most significant factor that influences the pullout interaction coefficients. Subsequently pullout tests have been performed on geogrid embedded in four different fill materials at three normal stresses. The proposed XGBoost model gives 90% accuracy in prediction of pullout interaction coefficient compared to laboratory test results. Finally, an open-source graphical user interface based on the XGBoost model has been created for preliminary estimation of the pullout interaction coefficient of geogrid at different test conditions.  相似文献   
5.
韩林沛  王青 《光学仪器》2022,44(3):8-13
针对大尺寸光学平面的直线度的纳米级测量精度需求,提出了倾斜入射下单截面平面度绝对检验方法,实现了对超过相移干涉仪口径的长平晶绝对检验。利用棱镜转向实现倾斜入射角度的精密预标定,棱镜标定角度的精度高于圆光栅和图像分析等方法,可提高测量不确定度到0.0042 μm。对比了常规三面互检绝对检验结果与本方法的差异,在相同尺寸下,直线度误差仅为1.2 nm。在确认标定反射镜位置后,整个倾斜入射的干涉图调整过程将被完全集中到待测长平晶的工作面上,不需要再对反射平晶进行操作。调整长平晶时各个维度的操作互不干涉,可快速简便地得到测量结果。  相似文献   
6.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
7.
《Ceramics International》2022,48(6):7748-7758
Micromechanics model, finite element (FE) simulation of microindentation and machine learning were deployed to predict the mechanical properties of Cu–Al2O3 nanocomposites. The micromechanical model was developed based on the rule of mixture and grain and grain boundary sizes evolution to predict the elastic modulus of the produced nanocomposites. Then, a FE model was developed to simulate the microindentation test. The input for the FE model was the elastic modulus that was computed using the micromechanics model and wide range of yield and tangent stresses values. Finally, the output load-displacement response from the FE model, the elastic modulus, the yield and tangent strengths used for the FE simulations, and the residual indentation depth were used to train the machine learning model (Random vector functional link network) for the prediction of the yield and tangent stresses of the produced nanocomposites. Cu–Al2O3 nanocomposites with different Al2O3 concentration were manufactured using insitu chemical method to validate the proposed model. After training the model, the microindentation experimental load-displacement curve for Cu–Al2O3 nanocomposites was fed to the machine learning model and the mechanical properties were obtained. The obtained mechanical properties were in very good agreement with the experimental ones achieving 0.99 coefficient of determination R2 for the yield strength.  相似文献   
8.
This paper presents a Microsoft Excel tool to calculate liquid-gas mass transfer coefficients in packed towers to support numerical design activities in the courses of Unit Operations for Industrial Process and Sustainable Process Design for the Master’s degree in Chemical Engineering of the University of Naples Federico II (Italy).The Mass Transfer Solver Tool (MT Solver Tool) uses several available models to estimate, separately, the values of liquid and gas mass-transfer coefficients and the wet surface area for 144 random and structured packings of interest for absorption/stripping and distillation processes. In addition, a separate spreadsheet can be used in a user-defined mode, to evaluate the mass transfer coefficients with new packing types or to interpret experimental data when the geometrical and physical characteristics of the packing are known. Eventually, the tool is supplied with a data library, where packing geometry and model fitting parameters can be retrieved.The software is aimed to support students and educators in the Unit Operations for Industrial Process and Sustainable Process Design courses. In particular, this is meant to be an example on how the accuracy of design algorithms adopted in unit operation processes is affected by the use of the underpinning correlations for mass transfer rate or pressure drops. Besides, this is aimed to encourage comparison of different correlations when exact field data are not available. Besides, chemical engineers and researchers interested in packed columns design and modelling data may also benefit from the utilization of the software. The MT Solver Tool was introduced to students in a dedicated tutorial lesson after lecturers on packed column design algorithms for distillation, absorption and stripping. Most of the students of the course participated to a group training aimed to simulate the design of an absorption column supported by the MT Solver Tool providing feedback on its application.After the training, an anonymous survey was proposed to the students to monitor the approval rating of the proposed activity and the use of the MT Solver Tool software to support numerical calculations.  相似文献   
9.
This work correlates the charge carrier transport mechanism of silicon oxycarbide-based thin films with their morphology and thermal stress. Segregation of highly-graphitized carbon-rich, oxygen-depleted C/SiC areas homogeneously dispersed within an oxygen-rich C/SiOC matrix was seen on the 500 nm-SiOC thin films. Compressive biaxial stress induced by the mismatch with the Si-substrate thermal expansion coefficient was calculated at 109 MPa. Through Hall measurements, p-type carriers were shown dominating the SiOC film similar to monolithic samples. Thin films and monoliths have comparable carrier concentrations while the carrier mobility in SiOC thin films was 2 magnitudes higher than that of monolithic samples and is considered a consequence of the compressive thermal stress acting on the film. Improved conductivity of 16 S cm -1 is measured for the SiOC thin film sample which is assumed considering the enhanced carrier mobility alongside the reduced percolation threshold ascribed to the phase-separated morphology of the thin film.  相似文献   
10.
李丽  李虹飞 《包装工程》2021,42(15):253-257
目的 为提高食品包装过程计量组件的称量精度和效率,采用智能控制算法设计一种高精度计量控制系统.方法 在分析动态称量系统工作原理的基础上,建立称量过程数学模型,将控制对象由放料阀门开度转换为电机轴位置.考虑到传统PID控制的缺陷,结合PI Ziegler-Nichols和预测控制设计一种高精度计量控制系统.该控制系统可实现比例和积分系数的在线调整,能够抑制参数变化、负载扰动;预测控制可提高系统收敛速度和跟踪能力.最后进行仿真和实验研究.结果 仿真结果表明,智能控制算法具有比较强的自适应、自整定能力,计量精度可以达到静态称量水平,均高于99.5%.结论 食品包装高精度计量控制系统具有精度高、稳定性好、称量效率高等特点,在实际应用中对称量过程的控制效果相对较好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号