首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  国内免费   5篇
  完全免费   46篇
  自动化技术   154篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   11篇
  2013年   10篇
  2012年   17篇
  2011年   14篇
  2010年   14篇
  2009年   19篇
  2008年   18篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有154条查询结果,搜索用时 62 毫秒
1.
未知环境中移动机器人并发建图与定位(CML)的研究进展   总被引:19,自引:0,他引:19  
王璐  蔡自兴 《机器人》2004,26(4):380-384
综述了近年较流行的CML方法,侧重比较各自估计与增量式建造地图的过程以及如何处理不确定信息、如何表示地图.还对CML问题的难点进行了分析,并探讨了未来的研究趋势.  相似文献
2.
未知环境中移动机器人SLAM问题的研究进展   总被引:15,自引:14,他引:1  
移动机器人的定位与地图创建是机器人研究中一个基础且重要的问题。本文对该领域的最新进展进行了综述.特别侧重于未知环境中机器人并发定位与地图创建(SLAM)问题;比较详细地分析了地图表示方法、定位和环境特征的提取、不确定信息的表示和处理等关键技术:同时对几种典型的SLAM方法进行了介绍:阐述了移动机器人SLAM问题研究中所面临的主要问题.并探计了将来的发展方向。  相似文献
3.
庄严  王伟  王珂  徐晓东 《自动化学报》2005,31(6):925-933
该文研究了部分结构化室内环境中自主移动机器人同时定位和地图构建问题.基于激光和视觉传感器模型的不同,加权最小二乘拟合方法和非局部最大抑制算法被分别用于提取二维水平环境特征和垂直物体边缘.为完成移动机器人在缺少先验地图支持的室内环境中的自主导航任务,该文提出了同时进行扩展卡尔曼滤波定位和构建具有不确定性描述的二维几何地图的具体方法.通过对于SmartROB-2移动机器人平台所获得的实验结果和数据的分析讨论,论证了所提出方法的有效性和实用性.  相似文献
4.
基于全景视觉的移动机器人同步定位与地图创建研究   总被引:7,自引:0,他引:7  
提出了一种基于全景视觉的移动机器人同步定位与地图创建(Omni-vSLAM)方法.该方法提取 颜色区域作为视觉路标;在分析全景视觉成像原理和定位不确定性的基础上建立起系统的观测模型,定位出 路标位置,进而通过扩展卡尔曼滤波算法(EKF)同步更新机器人位置和地图信息.实验结果证明了该方法在 建立环境地图的同时可以有效地修正由里程计造成的累积定位误差.  相似文献
5.
Digital 3D models of the environment are needed in rescue and inspection robotics, facility managements and architecture. This paper presents an automatic system for gaging and digitalization of 3D indoor environments. It consists of an autonomous mobile robot, a reliable 3D laser range finder and three elaborated software modules. The first module, a fast variant of the Iterative Closest Points algorithm, registers the 3D scans in a common coordinate system and relocalizes the robot. The second module, a next best view planner, computes the next nominal pose based on the acquired 3D data while avoiding complicated obstacles. The third module, a closed-loop and globally stable motor controller, navigates the mobile robot to a nominal pose on the base of odometry and avoids collisions with dynamical obstacles. The 3D laser range finder acquires a 3D scan at this pose. The proposed method allows one to digitalize large indoor environments fast and reliably without any intervention and solves the SLAM problem. The results of two 3D digitalization experiments are presented using a fast octree-based visualization method.  相似文献
6.
7.
基于强跟踪UKF 的自适应SLAM 算法   总被引:5,自引:0,他引:5  
针对无迹卡尔曼滤波(UKF)缺乏在线自适应调整能力,导致系统状态估计精度较低的问题,提出了 一种将强跟踪滤波器(STF)与UKF 相结合的SLAM 算法.该算法对于UKF 中每个采样点采用STF 进行更新,获 得优化滤波增益,抑制噪声对系统状态估计的影响,使系统状态估计迅速收敛到真实值附近.仿真实验对比了当前 几种SLAM 算法在不同噪声环境下的性能,实验表明,基于强跟踪UKF 的自适应SLAM 算法具有更好的鲁棒性和 自适应性.  相似文献
8.
一种基于线特征的SLAM算法研究   总被引:4,自引:0,他引:4       下载免费PDF全文
A line-feature based SLAM algorithm is presented in this paper to resolve the conflict between the requirements of computational complexity and information-richness within the point-feature based SLAM algorithm, All operations required for building and maintaining the map, such as model-setting, data association, and state-updating, are described and formulated. This approach has been programmed and successfully tested in the simulation work, and results are shown at the end of this paper.  相似文献
9.
SLAM 问题中机器人定位误差分析与控制   总被引:4,自引:0,他引:4       下载免费PDF全文
移动机器人同步定位与建图问题 (Simultaneous localization and mapping, SLAM) 是机器人能否在未知环境中实现完全自主的关键问题之一. 其中, 机器人定位估计对于保持地图的一致性非常重要. 本文分析了 SLAM 问题中机器人定位误差的收敛特性. 分析表明随着机器人的运动,机器人定位误差总体上逐渐增大; 在完全未知环境中无法预测机器人定位误差的上限. 根据理论分析, 本文提出了一种控制机器人定位误差在单位距离上增长速度的算法. 该算法通过搜索获得满足定位误差限制的最佳的机器人运动速度, 从而控制机器人定位误差的增长.  相似文献
10.
Learning Occupancy Grid Maps with Forward Sensor Models   总被引:3,自引:0,他引:3  
This article describes a new algorithm for acquiring occupancy grid maps with mobile robots. Existing occupancy grid mapping algorithms decompose the high-dimensional mapping problem into a collection of one-dimensional problems, where the occupancy of each grid cell is estimated independently. This induces conflicts that may lead to inconsistent maps, even for noise-free sensors. This article shows how to solve the mapping problem in the original, high-dimensional space, thereby maintaining all dependencies between neighboring cells. As a result, maps generated by our approach are often more accurate than those generated using traditional techniques. Our approach relies on a statistical formulation of the mapping problem using forward models. It employs the expectation maximization algorithm for searching maps that maximize the likelihood of the sensor measurements.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号