首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23411篇
  免费   2510篇
  国内免费   2040篇
电工技术   599篇
技术理论   1篇
综合类   2278篇
化学工业   939篇
金属工艺   3859篇
机械仪表   1932篇
建筑科学   6382篇
矿业工程   1671篇
能源动力   531篇
轻工业   330篇
水利工程   1734篇
石油天然气   585篇
武器工业   279篇
无线电   761篇
一般工业技术   3027篇
冶金工业   1415篇
原子能技术   128篇
自动化技术   1510篇
  2024年   29篇
  2023年   374篇
  2022年   602篇
  2021年   797篇
  2020年   820篇
  2019年   611篇
  2018年   619篇
  2017年   756篇
  2016年   926篇
  2015年   936篇
  2014年   1427篇
  2013年   1390篇
  2012年   1776篇
  2011年   1922篇
  2010年   1409篇
  2009年   1428篇
  2008年   1324篇
  2007年   1620篇
  2006年   1512篇
  2005年   1191篇
  2004年   976篇
  2003年   918篇
  2002年   744篇
  2001年   630篇
  2000年   582篇
  1999年   526篇
  1998年   372篇
  1997年   323篇
  1996年   227篇
  1995年   217篇
  1994年   213篇
  1993年   116篇
  1992年   141篇
  1991年   105篇
  1990年   111篇
  1989年   83篇
  1988年   69篇
  1987年   27篇
  1986年   22篇
  1985年   14篇
  1984年   12篇
  1983年   11篇
  1982年   13篇
  1981年   6篇
  1980年   10篇
  1979年   12篇
  1978年   3篇
  1974年   1篇
  1972年   1篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
2.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
3.
4.
Face aging (FA) for young faces refers to rendering the aging faces at target age for an individual, generally under 20s, which is an important topic of facial age analysis. Unlike traditional FA for adults, it is challenging to age children with one deep learning-based FA network, since there are deformations of facial shapes and variations of textural details. To alleviate the deficiency, a unified FA framework for young faces is proposed, which consists of two decoupled networks to apply aging image translation. It explicitly models transformations of geometry and appearance using two components: GD-GAN, which simulates the Geometric Deformation using Generative Adversarial Network; TV-GAN, which simulates the Textural Variations guided by the age-related saliency map. Extensive experiments demonstrate that our method has advantages over the state-of-the-art methods in terms of synthesizing visually plausible images for young faces, as well as preserving the personalized features.  相似文献   
5.
The evolution of strain hardening behavior of the Fe_(50)(CoCrMnNi)_(50) medium-entropy alloy as a function of the fraction of recrystallized microstructure and the grain size was studied using the Hollomon and Ludwigson equations.The specimens under study were partially recrystallized,fully recrystallized with ultrafine-grained microstructure,and fully recrystallized with coarse grains.The yield strength decreases steadily as the fraction of recry stallized micro structure and grain size increases due to the recovery process and the Hall-Petch effect.Interestingly,the bimodal grain distribution was found to have a significant impact on strain hardening during plastic deformation.For instance,the highest ultimate tensile strength was exhibited by a 0.97 μm specimen,which was observed to contain a bimodal grain distribution.Furthermore,using the Ludwigson equation,the effect of the bimodal grain distribution was established from the behavior of K_2 and n1 curves.These curves tend to show very high values in the specimens with a bimodal grain distribution compared to those that show a homogenous grain distribution.Additionally,the bimodal grain distribution contributes to the extensive L(u|")ders strain observed in the 0.97 μm specimen,which induces a significant deviation of the Hollomon equation at lower strains.  相似文献   
6.
以禹州市梁北矿为研究区,利用2018年11月—2020年6月间35景5 m×20 m分辨率Sentinel-1A数据,采用InSAR技术,利用SBAS(短基线集InSAR)雷达干涉测量方法对梁北矿进行地面沉降信息提取解译,并通过实地调查成果认为,采用InSAR技术适合在矿区开展地表变形监测。  相似文献   
7.
Referring to the total surface existing in wheat dough, gluten–starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle–polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten–starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten–starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten–starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.  相似文献   
8.
Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing (DFOS), high-density electrical resistivity tomography (HD-ERT) and close-range photogrammetry (CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks. Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, real-time and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.  相似文献   
9.
高面板坝的变形对面板的安全运行有着特别重要的影响,国内外已建的高面板坝工程中,因坝体变形大导致防渗面板挤压破损,坝体渗漏量大的实例较多,不得不降低水库水位进行修复处理,造成较大的经济损失乃至给大坝的长期运行留下安全隐患。通过发生挤压破损的实例分析,发现变形控制缺乏系统性是发生面板挤压破损的主要因素,为预防面板破损,系统提出了“控制坝体总变形,转化有害变形,适应纵向变形”的坝体变形控制方法,并在使用软硬岩混合料筑坝的董箐面板堆石坝中得到的应用,取得了良好效果,该工程运行至今达十余年,未见面板有挤压破损迹象,该方法对建设200 m以上乃至300 m级超高面板坝具有重要借鉴意义。  相似文献   
10.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号