首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3947篇
  免费   126篇
  国内免费   256篇
电工技术   100篇
综合类   312篇
化学工业   530篇
金属工艺   118篇
机械仪表   135篇
建筑科学   36篇
矿业工程   67篇
能源动力   189篇
轻工业   17篇
水利工程   17篇
石油天然气   13篇
武器工业   24篇
无线电   315篇
一般工业技术   182篇
冶金工业   62篇
原子能技术   10篇
自动化技术   2202篇
  2024年   1篇
  2023年   66篇
  2022年   102篇
  2021年   106篇
  2020年   139篇
  2019年   116篇
  2018年   126篇
  2017年   149篇
  2016年   96篇
  2015年   72篇
  2014年   215篇
  2013年   127篇
  2012年   209篇
  2011年   334篇
  2010年   285篇
  2009年   304篇
  2008年   258篇
  2007年   294篇
  2006年   311篇
  2005年   210篇
  2004年   176篇
  2003年   163篇
  2002年   138篇
  2001年   88篇
  2000年   81篇
  1999年   53篇
  1998年   30篇
  1997年   21篇
  1996年   15篇
  1995年   7篇
  1994年   12篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   6篇
  1988年   3篇
  1979年   1篇
排序方式: 共有4329条查询结果,搜索用时 15 毫秒
1.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
2.
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition.  相似文献   
3.
《Ceramics International》2022,48(9):12800-12805
Perovskite solid solution materials, namely, 0.67BiFeO3-0.33BaTiO3, were synthesized by spark plasma sintering method. The effects of the spark plasma sintering temperature on phase purity, microstructure, and electric properties of the as-prepared materials were investigated. The materials could be referred as pseudocubic phases based on the X-ray diffraction patterns. The bulk density first increased and then decreased. The 880 °C-sintered-ceramics had the maximal density and a compact microstructure with grain size of 0.77 ± 0.34 μm. The dielectric constant as a function of temperature exhibited a broad peak. At the optimal spark-plasma-sintering temperature, enhanced ferroelectric properties were observed with a value of Pr ~ 21 μC/cm2. This investigation on the spark plasma sintering process confirms it as an efficient approach to prepare outstanding performance BiFeO3–BaTiO3 ceramics.  相似文献   
4.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   
5.
We analysed with different methods the densification of UO2 nanopowders in SPS under constant heating rate (CHR) and isothermal sintering conditions. The apparent activation energy of densification in SPS (75 kJ/mol with CHR method) is significantly smaller than in conventional sintering. It is shown that this is likely not an effect of the applied current. We also observed a threshold stress at 64 MPa for the transition from pressure-insensitive sintering (stress exponent n≈0) to pressure-assisted sintering, suggesting that the contribution of the capillary stresses in such nanopowders is comparable with the typical stress applied in SPS.  相似文献   
6.
《Ceramics International》2022,48(11):15640-15646
Ferroelectric ceramic with a large electrocaloric (EC) effect at a very low electric field is very attractive in the next solid state refrigeration technology. In this work, two Pb(Sc0.25In0.25Nb0.25Ta0.25)O3 (PSINT) medium-entropy ceramics were successfully synthesized by a spark plasma sintering (SPS) technology, including one-step-SPS processed and two-step-SPS processed samples. A large EC effect (△T ~ 0.85 K) with a high EC strength (△T/△E ~ 0.021 K cm/kV) around room temperature are obtained at a very low electric field (~40 kV/cm) in the two-step-SPS processed sample. Moreover, the working temperature range is very broad (~120 K), which can be responsible for the high relaxation degree of the dielectric peak. It can be believed that the PSINT medium-entropy ceramics can be promising candidates for application in the next-generation EC cooling devices.  相似文献   
7.
为了提高花粉浓度预报的准确率,解决现有花粉浓度预报准确率不高的问题,提出了一种基于粒子群优化(PSO)算法和支持向量机(SVM)的花粉浓度预报模型。首先,综合考虑气温、气温日较差、相对湿度、降水量、风力、日照时数等多种气象要素,选择与花粉浓度相关性较强的气象要素构成特征向量;其次,利用特征向量与花粉浓度数据建立SVM预测模型,并使用PSO算法找出最优参数;然后利用最优参数优化花粉浓度预测模型;最后,使用优化后的模型对花粉未来24 h浓度进行预测,并与未优化的SVM、多元线性回归法(MLR)、反向神经网络(BPNN)作对比。此外使用优化后的模型对某市南郊观象台和密云两个站点进行逐日花粉浓度预测。实验结果表明,相比其他预报方法,所提方法能有效提高花粉浓度未来24 h预测精度,并具有较高的泛化能力。  相似文献   
8.
针对电力市场用户群庞大,交易过程中售电套餐选择困难的问题,在Spark环境下设计了一种售电套餐推荐方法,同时也解决了售电套餐推荐过程中在大数据环境下的可扩展性及实时性问题。首先,计算出每个套餐属性的权重值,从而计算得到售电套餐综合相似度。然后,计及用户和套餐两方面提出一种售电套餐推荐方法,实现售电套餐的精准推荐。实验表明,提出的推荐方法能够明显提高推荐的准确度,并且在分布式环境下具有良好的推荐效率和可扩展性。  相似文献   
9.
Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.  相似文献   
10.
《Ceramics International》2020,46(15):23544-23555
This investigation aimed to study the influence of carbon black on the qualifications of TiC-based materials. For this objective, two samples, namely monolithic TiC and TiC-5 wt% carbon black were sintered by spark plasma sintering (SPS) method at 1900 °C. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the as-sintered samples. Introducing carbon black enhanced the relative density of TiC significantly, reaching a near fully dense substance. Phase analysis and microstructural studies manifested the formation of non-stoichiometric TiCx in both ceramics. Although the introduction of carbonaceous additive considerably increased the thermal conductivity and flexural strength of TiC, standing at 25.1 W/mK and 658 MPa, respectively, its influence on the Vickers hardness was trivial (both ~ 3200 HV0.1 kg). Finally, the composite specimen presented a lower coefficient of friction (~ 0.31) on average compared to the undoped TiC (~ 0.34).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号