首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8386篇
  免费   329篇
  国内免费   322篇
电工技术   154篇
综合类   190篇
化学工业   1523篇
金属工艺   387篇
机械仪表   739篇
建筑科学   398篇
矿业工程   66篇
能源动力   530篇
轻工业   160篇
水利工程   39篇
石油天然气   57篇
武器工业   36篇
无线电   427篇
一般工业技术   482篇
冶金工业   34篇
原子能技术   22篇
自动化技术   3793篇
  2024年   8篇
  2023年   80篇
  2022年   135篇
  2021年   193篇
  2020年   141篇
  2019年   99篇
  2018年   110篇
  2017年   167篇
  2016年   184篇
  2015年   248篇
  2014年   463篇
  2013年   547篇
  2012年   418篇
  2011年   711篇
  2010年   467篇
  2009年   535篇
  2008年   619篇
  2007年   626篇
  2006年   586篇
  2005年   492篇
  2004年   458篇
  2003年   435篇
  2002年   287篇
  2001年   186篇
  2000年   137篇
  1999年   119篇
  1998年   95篇
  1997年   63篇
  1996年   85篇
  1995年   60篇
  1994年   50篇
  1993年   38篇
  1992年   23篇
  1991年   28篇
  1990年   29篇
  1989年   14篇
  1988年   18篇
  1987年   12篇
  1986年   7篇
  1985年   12篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   7篇
  1977年   4篇
  1976年   4篇
  1974年   2篇
排序方式: 共有9037条查询结果,搜索用时 15 毫秒
1.
This work presents a complete bond graph modeling of a hybrid photovoltaic-fuel cell-electrolyzer-battery system. These are multi-physics models that will take into account the influence of temperature on the electrochemical parameters. A bond graph modeling of the electrical dynamics of each source will be introduced. The bond graph models were developed to highlight the multi-physics aspect describing the interaction between hydraulic, thermal, electrochemical, thermodynamic, and electrical fields. This will involve using the most generic modeling approach possible for managing the energy flows of the system while taking into account the viability of the system. Another point treated in this work is to propose. In this work, a new strategy for the power flow management of the studied system has been proposed. This strategy aims to improve the overall efficiency of the studied system by optimizing the decisions made when starting and stopping the fuel cell and the electrolyzer. It was verified that the simulation results of the proposed system, when compared to simulation results presented in the literature, that the hydrogen demand is increased by an average of 8%. The developed management algorithm allows reducing the fuel cell degradation by 87% and the electrolyzer degradation by 65%. As for the operating time of the electrolyzer, an increment of 65% was achieved, thus improving the quality of the produced hydrogen. The Fuel Cell's running time has been decreased by 59%. With the ambition to validate the models proposed and the associated commands, the development of this study gave rise to the creation of an experimental platform. Using this high-performance experimental platform, experimental tests were carried out and the results obtained are compared with those obtained by simulation under the same metrological conditions.  相似文献   
2.
The sintering behavior of WC-Ni nanocomposite powder was evaluated through experimental and statistical approaches to study the contribution of involving parameters of chemical composition (Ni wt. %) and sintering temperature on sinterability of system by assessing the resulted densification and microhardness. The experimental process was designed based on factorial experimental design for independent effective parameters of Ni percentage (12, 18 and 23 wt %), and sintering temperature (8 different values within 1350–1485 °C). The resulted products of experimental testing after compaction and sintering were analyzed by FESEM and EDX to image the microstructure and evaluate the chemical composition and elemental distribution. The density and microhardness were measured as well. An artificial neural network (ANN) was applied to describe the corresponding individual and mutual impacts on sintering. The ANN model was developed by feed-forward back propagation network including topology 2:5:2 and trainlm algorithm to model and predict density and microhardness. A great agreement was observed between the predicted values by the ANN model and the experimental data for density and microhardness (regression coefficients (R2) of 0.9983 and 0.9924 for target functions of relative density and microhardness, respectively). Results showed that the relative importance of operating parameters on target functions (relative density and microhardness) was found to be 62% and 38% for sintering temperature and Ni percentage, respectively. Also, ANN model exhibited relatively high predictive ability and accuracy in describing nonlinear behavior of the sintering of WC-Ni nanocomposite powder. The experimental results confirmed that the appropriate sintering temperature was influenced by Ni content. The optimum parameters were found to be 12 wt % Ni sintered at 1460 °C with the highest microhardness and relative density.  相似文献   
3.
The primary purpose of this work is to develop a novel model for comprehensively investigating the hydrogen storage performance under the framework of diffusion of hydrogen atoms through hydride layer. The proposed model is constructed upon perfectly mathematical-physical equations, by taking into account complicated multi-scale and multi-physics coupling actions. Importantly, three-dimensional numerical simulations are performed to explore the coupling effects of micro diffusion, mesoscopic permeation, and macroscopic fluid flow. An analytical approach accounting for the characteristics of reaction bed, particle, and crystal grain is presented as well. In addition, a parametric analysis is conducted to reveal that the hydride particle dimension, particle porosity, grain size, and diffusion coefficient of reacted layer have a significant effect on overall hydrogen storage performance, highlighting that grain size and hydrogen diffusion coefficient are vital factors that need to be considered for material preparation and design.  相似文献   
4.
Several studies have confirmed the geocell reinforcement system as potential road material. However, there is a wide gap between the number of research studies evaluating the geocell in the laboratory and those dealing with road design methods using the geocell. Due to this gap, the geocell system has not reached its full potential in highways. The present study proposes fragility modeling to design low volume roads by considering the geocell reinforced layer's modulus. A predictive model was developed to estimate the geocell layer's modulus using laboratory and finite element analysis results. The results indicate that geocell reinforcement reduces the stresses on the underlying road layers. The developed fragility approach is then used to examine three road designs for Texas's low volume road involving different geocell reinforced layers. The obtained fragility curves indicate the reliability of each of the three road designs against the traffic load and can thereby assist decision-makers in selecting the optimum design. By designing geocell reinforced roads via fragility modeling, highway officials will be able to integrate any uncertainties in the design inputs and check designs against road performance criteria such as rutting and fatigue cracking, and against decision criteria such as cost, emissions, etc.  相似文献   
5.
Degradation rates of electrical current during constant voltage operation of SOFCs with anodes made using NiO precursor powders from two different manufacturers with and without the addition of aluminum titanate (ALT) added by either mechanical mixing or anode infiltration have been quantified using a novel MATLAB algorithm. Because the algorithm has been used to quantify degradation rates for many different SOFC tests, it is thought that the method can be applied to most measured SOFC data to quantify the instantaneous cell degradation rate as a function of time for the entire SOFC performance measurement. Degradation rates determined at different times have been plotted against varying concentrations of ALT addition, facilitating the estimation of optimum ALT concentration for SOFC anodes made with NiO from a specific manufacturer. The algorithm used to determine degradation rates is available upon request to the corresponding author.  相似文献   
6.
Decades of scientific work dedicated to the investigation of phase diagrams gave significant benefit to industry and science. After all those years of phase diagram investigation still there is missing information about phase diagram of some ternary systems. One of those systems is Cu-Ge-Pb. It is known importance of Cu-based alloys and Ge-based alloys in electro industry. Since such combination is not tested before this work will provide information about phase diagram of ternary Cu-Ge-Pb system. In this work ternary Cu-Ge-Pb system has been tested experimentally and analytically by using Calphad model. Two isothermal sections at 600 and 400 °C and three vertical sections are experimentally tested and results were compared with calculated corresponding phase diagrams. None of the ternary compound and large solubility of third element in binary compound is not confirmed. Liquidus projection, invariant reaction and scheme of invariant reaction are presented. Scheil and Lever simulation of solid phases for Cu80Ge10Pb10 alloy were calculated.  相似文献   
7.
Recently, the proposal of graph convolutional networks (GCN) has successfully implemented into hyperspectral image data representation and analysis. In spite of the great success, there are still several major challenges in hyperspectral image classification, including within-class diversity, and between-class similarity, which generally degenerate hyperspectral image classification performance. To address the problems, we propose a discriminative graph convolution networks (DGCN) for hyperspectral image classification. This method introduces the concepts of within-class scatter and between-class scatter, which respectively reflect the global geometric structure and discriminative information of the input space. The experimental results on the hyperspectral data sets show that the proposed method has good classification performance.  相似文献   
8.
Residential natural gas consumption depends on several factors. Available tools and methods to identify, categorize, and validate effective factors have some limitations, making consumption modeling more complex. Once a comprehensive model of effective consumption factors is developed for residential gas consumers, it can predict consumption. In addition, such a model could be used to verify the accuracy of measuring devices in order to reduce unaccounted for gas (UFG). The key factors affecting residential gas consumption were identified based on previous studies and their mutual effects were analyzed using a fuzzy cognitive mapping (FCM) method. The most significant factors and their effects on natural gas consumption in the residential sector were determined. In this study, for the first time, the expected consumption for each consumer was estimated using a consumption index. Generally, if the estimated consumption is significantly different from the amount recorded by the meter, it could suggest a potential source of UFG. The proposed method was applied to the data collected from the residential gas consumers of a small region in Iran (Dasht-e Arjan region, Fars province), and the results demonstrate the effectiveness of the proposed method.  相似文献   
9.
Hydrogen production from waste glycerol, mainly producible as a by-product of biodiesel synthesis, is investigated as an attractive opportunity for exploiting renewable energy sources for further applications. Glycerol steam reforming using membrane technology was modeled by taking into accounts the maim transport phenomena, thermodynamic criteria and chemical process kinetics. A sensitivity analysis of operating conditions was made for key performance metrics such as glycerol conversion, hydrogen yield and hydrogen recovery. Glycerol conversion intensifies with enhancement of operating pressure and temperature, whereas high feed molar ratio and sweep ratio have limiting effect. Hydrogen permeation and subsequently, hydrogen recovery facilitates with increasing sweep gas ratio and sweep gas temperature. Hydrogen recovery enhances from 70% to 99% with increasing temperature from 350 to 500 °C at feed molar ratio of 3. Also, hydrogen recovery improves from 50% to 71% with increasing sweep ratio from 0 to 20 at 350 °C and 1 bar.  相似文献   
10.
High-temperature proton exchange membrane fuel cell (HT-PEMFC), which operates between 160 °C and 200 °C, is considered to be a promising technology, especially for cogeneration applications. In this study, a mathematical model of a natural gas fed integrated energy system based on HT-PEMFC is first developed using the principles of electrochemistry and thermodynamics (including energy and exergy analyses). The effects of some key operating parameters (e.g., steam-to-carbon ratio, HT-PEMFC operating temperature, and anode stoichiometric ratio) on the system performance (electrical, cogeneration, and exergetic efficiencies) are examined. The exergy destruction rates of each component in the integrated system are found for different values of these parameters. The results show that the most influential parameter which affects the performance of the integrated system is the anode stoichiometric ratio. For the baseline conditions, when the anode stoichiometric ratio increases from 1.2 to 2, the electrical, cogeneration, and exergetic efficiencies decrease by 42.04%, 33.15%, and 37.39%, respectively. The highest electrical power output of the system is obtained when the SCR, operating temperature, and anode stoichiometric ratio are taken as 2, 160 °C, and 1.2, respectively. For this case, the electrical, cogeneration, and exergetic efficiencies are found as 26.20%, 70.34%, and 26.74%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号