首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
为了缓解神经网络的“黑盒子”机制引起的算法可解释性低的问题,基于使用证据推理算法的置信规则库推理方法(以下简称RIMER)提出了一个规则推理网络模型.该模型通过RIMER中的置信规则和推理机制提高网络的可解释性.首先证明了基于证据推理的推理函数是可偏导的,保证了算法的可行性;然后,给出了规则推理网络的网络框架和学习算法,利用RIMER中的推理过程作为规则推理网络的前馈过程,以保证网络的可解释性;使用梯度下降法调整规则库中的参数以建立更合理的置信规则库,为了降低学习复杂度,提出了“伪梯度”的概念;最后,通过分类对比实验,分析了所提算法在精确度和可解释性上的优势.实验结果表明,当训练数据集规模较小时,规则推理网络的表现良好,当训练数据规模增大时,规则推理网络的也能达到令人满意的结果.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号