首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  国内免费   1篇
  完全免费   5篇
  自动化技术   12篇
  2017年   5篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
针对使用视觉背景提取(ViBe)模型在室外动态背景下进行移动目标检测时存在不规则闪烁像素点对前景检测结果造成干扰的问题,提出一种基于视觉背景提取算法的闪烁像素噪声消除方法.在背景模型建立阶段设定背景模型样本标准差阈值,约束背景模型的采样值范围以提高背景模型准确性.在前景检测阶段引入自适应检测阈值提高前景物体检测精度,在背景模型更新过程中对图像边缘背景像素点进行边缘抑制以阻止错误背景样本值更新到背景模型.在此基础上,结合形态学操作修复连通域,提高前景图像的完整性.最后选取多个视频序列将该方法与原始ViBe算法、形态学改进方法的检测结果进行对比.实验结果表明,该方法能有效消除闪烁像素噪声对前景检测造成的影响,获取更精确的前景图像.  相似文献
2.
针对ViBe算法存在的不能有效去除背景噪声以及鬼影现象,提出一种结合帧差法和ViBe算法的改进算法。首先利用帧差法提取出运动目标的轮廓,然后根据得到的轮廓粗提取运动目标区域,最后在得到的运动目标区域基础上分类进行ViBe算法更新背景并分割出完整的运动目标。实验结果表明,此算法能够有效抑制噪声以及鬼影造成的影响,在速度方面也比原算法有所提高。  相似文献
3.
针对运动目标在运动过程中的交叉、遮挡等情况,采用自适应阈值的Vibe算法来压缩背景杂波和相关噪声,进而对运动目标进行检测.采用基于Camshift优化的粒子滤波算法对运动目标进行跟踪,该算法在粒子滤波算法的基础上结合Camshift算法的优点,加入当前观测信息,使粒子更好地采样于目标周围,提高了粒子效率,节省了算法时间.实验表明,自适应阈值的Vibe算法能够准确检测复杂场景中的运动目标,并能够适应噪声干扰和光照变化,而基于Camshift优化的粒子滤波算法能够在目标快速运动、遮挡情况下对目标进行准确跟踪.  相似文献
4.
Vibe算法运行速度较快,并能快速有效地抑制阴影、照相机晃动对前景检测造成的影响,具有较好的前景检测性能。但对于存在动态背景的户外视频,不可避免地存在背景干扰及噪声的影响,使得Vibe算法不能准确地检测出运动目标。针对此缺陷,提出颜色特征信息与Vibe相结合的改进算法,将像素点从RGB空间转换到HSV颜色空间进行颜色失真度比较,通过双模型的建立,有效减少了计算量。系列实验表明该方法能够取得更加准确的前景分割特性,对噪声干扰表现出良好的鲁棒性。  相似文献
5.
ViBe背景减去算法基于RGB色彩空间对像素进行处理,在光照突然改变的情况下,会造成大面积的背景误判为运动前景;同时会将场景中的运动背景大量的误检为前景. 针对上述问题,本文提出一种结合(r,g,I)标准色彩空间的改进算法. 实验结果表明,改进算法在光照突然变化时对前景的提取具有更好的鲁棒性,同时对于场景中运动的背景像素点,取得了更好的检测效果.  相似文献
6.
提出一种以ViBe算法为基础,结合三帧差分思想的运动目标检测算法。利用ViBe算法对每个像素点建模,当前帧和模型得到的差分图与前一帧得到的差分图再进行与运算,之后运用 ViBe 的思想对模型进行实时更新;同时在每一帧添加小波去噪处理,去除图像高频区域。本文算法有效地解决了光照变化对系统的影响,消除了影子问题,去除了闪烁背景点。实验结果表明,本文算法在多种环境下可以准确地提取运动目标,达到更好的鲁棒性。  相似文献
7.
背景差分法是实际中应用最广泛的前景检测方法,其关键是背景建模,比较常用的背景建模方法是高斯混合模型GMM(Gaussian Mixture Model)。最近一种称为视觉背景抽取算法ViBe(Visual Background extractor)由于其简单、快速的特点得到了越来越多的重视。但对于存在动态背景的户外视频,仍然存在噪声及背景的干扰。提出用形态学方法对算法进行改进,即先用开操作来消除噪声,再用闭操作来填充物体内细小空洞等。用ROC曲线测试了算法性能,结果表明,进行形态学处理后算法性能有了比较大的提高,比如对于户外视频Watersurface,在FPR为1%时TPR最高提高了31%。  相似文献
8.
Vibe算法是一种快速高效的背景建模算法,但该算法在运动目标检测过程中会产生鬼影。本文针对Vibe算法中鬼影消除缓慢的问题,结合多个场景的交通视频提出一种通过连续两帧前景背景像素时域变化来判断鬼影像素点并消除的方法,该方法加快了鬼影的消除速度。同时,对于视频拍摄场景中的背景噪声,采用了对前景图进行开闭操作去除小像素点以及对目标区域的空洞进行填充处理。实验表明,改进的Vibe算法能够加快鬼影的消除,并且与帧差法以及混合高斯建模算法相比,前景检测效果更精确。  相似文献
9.
针对传统ViBe运动目标检测算法提取的目标存在鬼影区域、且有闪烁像素点干扰的问题,提出一种结合Surendra背景更新算法而改进的ViBe算法进行运动目标检测.利用Surendra算法快速更新背景的特点迭代得到纯净背景;对ViBe算法检测前景进行像素标记和鬼影分类判别,去除鬼影像素点和闪烁像素点;输出新的前景.实验表明:该算法可以有效地去除ViBe算法前景检测中的鬼影,并能抑制闪烁像素噪声,获取更精确的前景图像.  相似文献
10.
针对ViBe算法在交通视频检测中出现明显鬼影区域、缓慢目标残影难以消除、检测精确度和鲁棒性不足的问题,本文提出改进算法,利用灰度信息为像素建立生命长度矩阵,使鬼影或残影快速融入背景样本得以消除。结合最大类间方差法设置自适应阈值,加入良好后处理抑制动态噪音。同时本文借鉴分类算法的统计指标,提出质量评价多个要素,以ViBe原算法、混合高斯算法(GMM)、LBP-OTSU相结合的背景差分法和本文改进算法为例,定性、定量对实验结果作出质量评价和分析。实验表明,改进算法在较少帧数内去除了鬼影,抑制了运动目标残影,提高了运动目标检测的准确度和整体性能。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号