首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26046篇
  免费   2100篇
  国内免费   671篇
电工技术   2554篇
综合类   2041篇
化学工业   2987篇
金属工艺   543篇
机械仪表   1572篇
建筑科学   5223篇
矿业工程   1154篇
能源动力   2449篇
轻工业   1298篇
水利工程   432篇
石油天然气   803篇
武器工业   681篇
无线电   1329篇
一般工业技术   3266篇
冶金工业   1246篇
原子能技术   197篇
自动化技术   1042篇
  2024年   40篇
  2023年   254篇
  2022年   506篇
  2021年   724篇
  2020年   764篇
  2019年   515篇
  2018年   467篇
  2017年   664篇
  2016年   688篇
  2015年   756篇
  2014年   1663篇
  2013年   1546篇
  2012年   1879篇
  2011年   2044篇
  2010年   1496篇
  2009年   1550篇
  2008年   1356篇
  2007年   1849篇
  2006年   1734篇
  2005年   1515篇
  2004年   1294篇
  2003年   1147篇
  2002年   1012篇
  2001年   721篇
  2000年   591篇
  1999年   438篇
  1998年   336篇
  1997年   271篇
  1996年   197篇
  1995年   187篇
  1994年   136篇
  1993年   100篇
  1992年   80篇
  1991年   70篇
  1990年   43篇
  1989年   38篇
  1988年   21篇
  1987年   13篇
  1986年   14篇
  1985年   11篇
  1984年   22篇
  1983年   17篇
  1982年   9篇
  1981年   6篇
  1980年   7篇
  1979年   3篇
  1976年   3篇
  1959年   3篇
  1956年   2篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
2.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
3.
Aqueous rechargeable Zinc (Zn)–polymer batteries are promising alternatives to prevalent Li-ion cells in terms of cost, safety, and rate capability but they suffer from limited specific capacity in addition to poor environmental adaptability. Herein, air and light are successfully utilized from external environments in single near-neutral two-electrode Zn batteries to enable remarkably improved electrochemical performance, fast self-charging, and switchable multimode-operation from Zn–polymer to Zn–air cells. This system is enabled by a well-designed polyaniline-nanorod-array based “all-in-one” cathode combining reversible redox capability, oxygen reduction activity, and photothermal-responsiveness. The initiative design allows perfect integration of multiple energy harvesting from ambient “air” and light, energy conversion, and storage in one single cathode. Thus, it can act as an efficient light-assisted electrically-rechargeable Zn–polymer cell featuring the highest specific capacity of 430.0 mAh g−1 among all existing polymer cathodes. Without external power sources, it can be self-charged to deliver a high discharging capacity of 363.1 mAh g−1 by concurrently harvesting chemical energy from air and light energy for only 20 min. It can also switch to a light-responsive Zn–air battery mode to surmount the output capacity limit of Zn–polymer battery mode for continued electricity supply.  相似文献   
4.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
5.
Household fine particulate matter (PM2.5) pollution greatly impacts residents' health. To explore the current national situation of household PM2.5 pollution in China, a study was conducted based on literature published from 1998 to 2018. After extracting data from the literature in conformity with the requirements, the nationwide household-weighted mean concentration of household PM2.5 (HPL) was calculated. Subgroup analyses of spatial, geographic, and temporal differences were also done. The estimated overall HPL in China was 132.2 ± 117.7 μg/m3. HPL in the rural area (164.3 ± 104.5 μg/m3) was higher than that in the urban area (123.9 ± 122.3 μg/m3). For HPLs of indoor sampling sites, the kitchen was the highest, followed by the bedroom and living room. There were significant differences of geographic distributions. The HPLs in the South were higher than the North in four seasons. The inhaled dose of household PM2.5 among school-age children differed from provinces with the highest dose up to 5.9 μg/(kg·d). Countermeasures should be carried out to reduce indoor pollution and safeguard health urgently.  相似文献   
6.
The advent of high-throughput sequencing methods allowed researchers to fully characterize microbial community in environmental samples, which is crucial to better understand their health effects upon exposures. In our study, we investigated bacterial and fungal community in indoor and outdoor air of nine classrooms in three elementary schools in Seoul, Korea. The extracted bacterial 16S rRNA gene and fungal ITS regions were sequenced, and their taxa were identified. Quantitative polymerase chain reaction for total bacteria DNA was also performed. The bacterial community was richer in outdoor air than classroom air, whereas fungal diversity was similar indoors and outdoors. Bacteria such as Enhydrobacter, Micrococcus, and Staphylococcus that are generally found in human skin, mucous membrane, and intestine were found in great abundance. For fungi, Cladosporium, Clitocybe, and Daedaleopsis were the most abundant genera in classroom air and mostly related to outdoor plants. Bacterial community composition in classroom air was similar among all classrooms but differed from that in outdoor air. However, indoor and outdoor fungal community compositions were similar for the same school but different among schools. Our study indicated the main source of airborne bacteria in classrooms was likely human occupants; however, classroom airborne fungi most likely originated from outdoors.  相似文献   
7.
8.
吖啶橙分子聚集体微粒可在513nm波长处出现最大的共振光散射强度(RLS)。在稀硫酸介质中,甲醛能催化溴酸钾氧化吖啶橙的反应,促使其RLS强度减弱。在最佳实验条件下,甲醛质量浓度ρ在0.020~0.25μg/mL的范围内与△I值呈良好的线性关系,线性回归方程为△I=1113.99ρ+49.23,线性相关系数r为0.9986。本法与国标法进行对照,在置信度等于95%时,用Cochran检验,两种方法间不存在显著性差异,方法操作简单、灵敏度高,用于室内外空气中甲醛测定,结果满意。  相似文献   
9.
A simple method for the collection and analysis of the four brominated and chlorinated trihalomethanes (THMs) in air samples is described. Ambient air samples were collected in pre‐prepared glass vials, with THM analysis performed using solid‐phase microextraction gas chromatography‐mass spectrometry, where the need for chemical reagents is minimized. Analytical parameters, including oven temperature program, solvent volume, incubation time, vial agitation, extraction time and temperature, as well as desorption time and temperature, were evaluated to ensure optimal method performance. The developed method allows for point‐in‐time quantification (compared to an average concentration measured over extended periods of time), with detection limits between 0.7 to 2.6 µg/m3. Excellent linearity (r> 0.99), repeatability (3% to 11% RSD), and reproducibility (3% to 16% RSD) were demonstrated over a concentration range from 2 to 5000 µg/m3. The method was validated for the analysis of THMs in indoor swimming pool air and was used to investigate the occurrence of THMs in the air above 15 indoor swimming pools. This is the first study to report the occurrence of THMs in swimming pool air in Australia, and concentrations higher than those previously reported in other countries were measured.  相似文献   
10.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号