首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   5篇
  自动化技术   6篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
排序方式: 共有6条查询结果,搜索用时 140 毫秒
1
1.
在大数据时代下,深度学习、强化学习以及分布式学习等理论和技术取得的突破性进展,为机器学习提供了数据和算法层面的强有力支撑,同时促进了机器学习的规模化和产业化发展.然而,尽管机器学习模型在现实应用中有着出色的表现,但其本身仍然面临着诸多的安全威胁.机器学习在数据层、模型层以及应用层面临的安全和隐私威胁呈现出多样性、隐蔽性和动态演化的特点.机器学习的安全和隐私问题吸引了学术界和工业界的广泛关注,一大批学者分别从攻击和防御的角度对模型的安全和隐私问题进行了深入的研究,并且提出了一系列的攻防方法.在本综述中,我们回顾了机器学习的安全和隐私问题,并对现有的研究工作进行了系统的总结和科学的归纳,同时明确了当前研究的优势和不足.最后,我们探讨了机器学习模型安全与隐私保护研究当前所面临的挑战以及未来潜在的研究方向,旨在为后续学者进一步推动机器学习模型安全与隐私保护研究的发展和应用提供指导.  相似文献
2.
近年来人工智能研究与应用发展迅速,机器学习模型大量应用在现实的场景中,人工智能模型的安全鲁棒性分析与评估问题已经开始引起人们的关注。最近的研究发现,对于没有经过防御设计的模型,攻击者通过给样本添加微小的人眼不可察觉的扰动,可以轻易的使模型产生误判,从而导致严重的安全性问题,这就是人工智能模型的对抗样本。对抗样本已经成为人工智能安全研究的一个热门领域,各种新的攻击方法,防御方法和模型鲁棒性研究层出不穷,然而至今尚未有一个完备统一的模型鲁棒性的度量评价标准,所以本文总结了现阶段在人工智能对抗环境下的模型鲁棒性研究,论述了当前主流的模型鲁棒性的研究方法,从一个比较全面的视角探讨了对抗环境下的模型鲁棒性这一研究方向的进展,并且提出了一些未来的研究方向。  相似文献
3.
深度学习是当前机器学习和人工智能兴起的核心。随着深度学习在自动驾驶、门禁安检、人脸支付等严苛的安全领域中广泛应用,深度学习模型的安全问题逐渐成为新的研究热点。深度模型的攻击根据攻击阶段可分为中毒攻击和对抗攻击,其区别在于前者的攻击发生在训练阶段,后者的攻击发生在测试阶段。本文首次综述了深度学习中的中毒攻击方法,回顾深度学习中的中毒攻击,分析了此类攻击存在的可能性,并研究了现有的针对这些攻击的防御措施。最后,对未来中毒攻击的研究发展方向进行了探讨。  相似文献
4.
随着深度学习研究与应用的迅速发展,人工智能安全问题日益突出。近年来,深度学习模型的脆弱性和不鲁棒性被不断的揭示,针对深度学习模型的攻击方法层出不穷,而后门攻击就是其中一类新的攻击范式。与对抗样本和数据投毒不同,后门攻击者在模型的训练数据中添加触发器并改变对应的标签为目标类别。深度学习模型在中毒数据集上训练后就被植入了可由触发器激活的后门,使得模型对于正常输入仍可保持高精度的工作,而当输入具有触发器时,模型将按照攻击者所指定的目标类别输出。在这种新的攻击场景和设置下,深度学习模型表现出了极大的脆弱性,这对人工智能领域产生了极大的安全威胁,后门攻击也成为了一个热门研究方向。因此,为了更好的提高深度学习模型对于后门攻击的安全性,本文针对深度学习中的后门攻击方法进行了全面的分析。首先分析了后门攻击和其他攻击范式的区别,定义了基本的攻击方法和流程,然后对后门攻击的敌手模型、评估指标、攻击设置等方面进行了总结。接着,将现有的攻击方法从可见性、触发器类型、标签类型以及攻击场景等多个维度进行分类,包含了计算机视觉和自然语言处理在内的多个领域。此外,还总结了后门攻击研究中常用的任务、数据集与深度学习模型,并介绍了后门攻击在数据隐私、模型保护以及模型水印等方面的有益应用,最后对未来的关键研究方向进行了展望。  相似文献
5.
人工智能的不断发展,使得人与机器的交互变得至关重要。语音是人与智能通讯设备之间通信的重要手段,在近几年飞速发展,说话人识别、情感识别、语音识别得到广泛地普及与应用。特别的,随着深度学习的兴起,基于深度学习的语音技术使机器理解语音内容、识别说话人方面达到近似人的水平,无论是效率还是准确度都得到了前所未有的提升。例如手机语音助手、利用语音控制智能家电、银行业务,以及来远程验证用户防止诈骗等。但是正是因为语音的广泛普及,它的安全问题受到了公众的关注,研究表明,用于语音任务的深度神经网络(Deep neural network,DNN)容易受到对抗性攻击。即攻击者可以通过向原始语音中添加难以察觉的扰动,欺骗DNN模型,生成的对抗样本人耳听不出区别,但是会被模型预测错误,这种现象最初出现在视觉领域,目前引起了音频领域的研究兴趣。基于此,本文对近年来语音领域的对抗攻击、防御方法相关的研究和文献进行了详细地总结。首先我们按照应用场景对语音任务进行了划分,介绍了主流任务及其发展背景。其次我们解释了语音对抗攻击的定义,并根据其应用场景对数字攻击与物理攻击分别进行了介绍。然后我们又按照对抗防御,对抗检测的划分总结了语音对抗样本的防御方法。最后我们对于该领域的不足、前景、以及发展方向进行了探讨。  相似文献
6.
在大数据时代下,深度学习理论和技术取得的突破性进展,为人工智能提供了数据和算法层面的强有力支撑,同时促进了深度学习的规模化和产业化发展.然而,尽管深度学习模型在现实应用中有着出色的表现,但其本身仍然面临着诸多的安全威胁.为了构建安全可靠的深度学习系统,消除深度学习模型在实际部署应用中的潜在安全风险,深度学习模型鲁棒性分析问题吸引了学术界和工业界的广泛关注,一大批学者分别从精确和近似的角度对深度学习模型鲁棒性问题进行了深入的研究,并且提出了一系列的模型鲁棒性量化分析方法.在本综述中,我们回顾了深度学习模型鲁棒性分析问题当前所面临的挑战,并对现有的研究工作进行了系统的总结和科学的归纳,同时明确了当前研究的优势和不足,最后探讨了深度学习模型鲁棒性研究以及未来潜在的研究方向.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号