首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  国内免费   4篇
  完全免费   10篇
  自动化技术   18篇
  2018年   1篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
排序方式: 共有18条查询结果,搜索用时 78 毫秒
1.
提出一种基于粒子群算法(PSO)和差分进化算法(DE)相结合的新型混合全局优化算法——PSODE.该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由差分操作进化而来.此外,通过采用一种信息分享机制,在算法执行过程中两个种群中的个体可以实现协同进化.为了进一步提高PSODE算法的性能,摆脱陷入局部最优点,还采用了一种变异机制.通过4个标准测试函数的测试并与PSO和DE算法进行比较,证明本文提出的PSODE算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法.  相似文献
2.
基于两种进化模式的双种群协作差分演化算法   总被引:2,自引:2,他引:0       下载免费PDF全文
提出了一种基于两种进化模式的双种群协作差分演化算法(DPDE)。在DPDE中,两个种群通过协作共同进化。首先,各种群以不同的进化模式,通过个体竞争实现自身进化;其次,种群之间基于局部信息传递和共享机制,通过随机交换个体方式相互协作、共同进化,既实现了不同进化模式间的优势互补,又可以改善种群的多样性。对于5个典型Benchmark测试函数,通过与DE和DEfirDE算法的比较表明:DPDE具有更好的全局收敛性和鲁棒性,特别适合求解高维多模态函数的最优化问题。  相似文献
3.
引力搜索算法的改进   总被引:1,自引:0,他引:1       下载免费PDF全文
引力搜索算法GSA(Gravitationa lSearch Algorithm)是最近由Esmat Rashedi基于引力定律提出的一个新算法。在引力搜索算法的基础上对其进行改进,得到了基于权值的引力搜索算法。与引力搜索算法相比,该算法在每一次迭代的过程中,都对粒子的惯性质量加一个权值。用算法对许多基准函数测试的实验效果表明,该方法可以使得引力搜索算法得到更好的结果。  相似文献
4.
采用机动飞行的蝙蝠算法   总被引:1,自引:0,他引:1  
针对基本蝙蝠算法存在着易陷入局部最优、后期收敛速度慢等问题,提出了采用机动飞行的蝙蝠优化算法.该算法中每只蝙蝠根据其当前在群体中位置的优劣情况选择不同的飞行模式,处于较优位置的蝙蝠选择机动飞行模式,随机变轨逐步向群体最优位置靠近捕获猎物;而处于较差位置的蝙蝠选择非机动飞行方式,随机移动捕获猎物.为表明所提出算法的有效性和正确性,通过九个典型的基准函数优化实验测试,实验结果表明,该算法具有较好的优化精度和较好的全局搜索能力.  相似文献
5.
对于9个典型的复杂BenchMark测试函数,分别利用PSO算法和GuoA算法进行数值计算比较,大量实验结果表明:GuoA算法更具有通用性和坚韧性,在全局收敛趋势方面较优,但是速度相对较慢;PSO算法的收敛速度很快,而且对于某些极难问题更具有优越性,但成功率相对较低,且容易早熟。  相似文献
6.
为了改善人工鱼群算法求解精度较低、容易过早收敛的弱点,提出了一种应用佳点集和反向学习的人工鱼群算法.改进算法在迭代中对当前种群中部分优质个体执行一般动态反向学习,生成它们的反向种群,引导种群向包含全局最优的解空间逼近,以提高算法的平衡和探索能力.当种群的拥挤程度超过阈值λ时,利用佳点集机制对大部分个体重新初始化,以帮助算法脱离局部最优的约束.在六个Benchmark函数上的实验表明,该算法收敛速度快、求解精度高,适合求解函数优化问题.  相似文献
7.
SAGACIA是一种混合随机优化算法,该算法虽已吸收了模拟退火算法、遗传算法和趋化性算法的优点,但搜索过程中仍存在收敛速度慢以及采用固定步长影响搜索精度的缺点,而捕食搜索策略通过限制的调节能较快锁定最优区域,从而提高收敛速度。结合两者的优缺点,提出一种具有捕食搜索策略的自适应调整步长SAGACIA算法,改进后的算法通过捕食搜索策略平衡了算法的局域搜索和全局搜索,提高了收敛速度;邻域搜索采用自适应步长,避免了最优解附近的震荡,提高了搜索精度。实验仿真结果表明,改进后的SAGACIA算法具有较快的收敛速度和较高的寻优精度,证明了算法改进的有效性和可行性。  相似文献
8.
赵洋  贺毅朝  李晰 《计算机应用》2012,(10):2911-2915,2919
在分析差分演化(DE)进化方式基础上,首先利用自加速性改进差异算子与选择算子,然后结合变邻域搜索改善算法的局部搜索能力,提出了一种具有自加速特性与变邻域搜索能力的差分演化算法(SAVNDE);基于DE的三种进化模式,利用5个Benchmark测试函数进行对比计算,实验结果表明:SAVNDE在保持了DE原有特性基础上,以较快的速度获得更好的结果。  相似文献
9.
针对标准粒子群算法进行多极点函数优化时易导致早熟收敛及陷入局部最优的问题,把生物学中昆虫生存的趋利避害原则引入到粒子群优化算法中,改变传统粒子群优化算法只存在趋利操作而没有避害操作的单向性,提出了两种不同的保持或增加种群多样性的改进算法。仿真实验结果表明,与传统粒子群优化算法相比,采用基于趋利避害原则的粒子群算法处理复杂的多峰函数可显著提高算法的全局寻优性能。  相似文献
10.
Despite the fact that the popular particle swarm optimizer (PSO) is currently being extensively applied to many real-world problems that often have high-dimensional and complex fitness landscapes, the effects of boundary constraints on PSO have not attracted adequate attention in the literature. However, in accordance with the theoretical analysis in [11], our numerical experiments show that particles tend to fly outside of the boundary in the first few iterations at a very high probability in high-dimensional search spaces. Consequently, the method used to handle boundary violations is critical to the performance of PSO. In this study, we reveal that the widely used random and absorbing bound-handling schemes may paralyze PSO for high-dimensional and complex problems. We also explore in detail the distinct mechanisms responsible for the failures of these two bound-handling schemes. Finally, we suggest that using high-dimensional and complex benchmark functions, such as the composition functions in [19], is a prerequisite to identifying the potential problems in applying PSO to many real-world applications because certain properties of standard benchmark functions make problems inexplicit.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号