首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  国内免费   12篇
  完全免费   163篇
  自动化技术   432篇
  2018年   20篇
  2017年   46篇
  2016年   58篇
  2015年   103篇
  2014年   153篇
  2013年   44篇
  2012年   7篇
  2008年   1篇
排序方式: 共有432条查询结果,搜索用时 31 毫秒
1.
大数据可视分析综述   总被引:5,自引:0,他引:5       下载免费PDF全文
任磊  杜一  马帅  张小龙  戴国忠 《软件学报》2014,25(9):1909-1936
可视分析是大数据分析的重要方法.大数据可视分析旨在利用计算机自动化分析能力的同时,充分挖掘人对于可视化信息的认知能力优势,将人、机的各自强项进行有机融合,借助人机交互式分析方法和交互技术,辅助人们更为直观和高效地洞悉大数据背后的信息、知识与智慧.主要从可视分析领域所强调的认知、可视化、人机交互的综合视角出发,分析了支持大数据可视分析的基础理论,包括支持分析过程的认知理论、信息可视化理论、人机交互与用户界面理论.在此基础上,讨论了面向大数据主流应用的信息可视化技术——面向文本、网络(图)、时空、多维的可视化技术.同时探讨了支持可视分析的人机交互技术,包括支持可视分析过程的界面隐喻与交互组件、多尺度/多焦点/多侧面交互技术、面向Post-WIMP的自然交互技术.最后,指出了大数据可视分析领域面临的瓶颈问题与技术挑战.  相似文献
2.
网络大数据:现状与展望   总被引:5,自引:0,他引:5  
网络大数据是指“人、机、物”三元世界在网络空间(Cyberspace)中交互、融合所产生并在互联网上可获得的大数据.网络大数据的规模和复杂度的增长超出了硬件能力增长的摩尔定律,给现有的IT架构以及机器处理和计算能力带来了极大挑战.同时,也为人们深度挖掘和充分利用网络大数据的大价值带来了巨大机遇.因此,迫切需要探讨大数据的科学问题,发现网络大数据的共性规律,研究网络大数据定性、定量分析的基础理论与基本方法.文中分析了网络大数据的复杂性、不确定性和涌现性,总结了网络空间感知与数据表示、网络大数据存储与管理体系、网络大数据挖掘和社会计算以及网络数据平台系统与应用等方面的主要问题与研究现状,并对大数据科学、数据计算需要的新模式与新范式、新型的IT基础架构和数据的安全与隐私等方面的发展趋势进行了展望.  相似文献
3.
大数据分析——RDBMS 与MapReduce 的竞争与共生   总被引:4,自引:0,他引:4       下载免费PDF全文
在科学研究、计算机仿真、互联网应用、电子商务等诸多应用领域,数据量正在以极快的速度增长,为了分析和利用这些庞大的数据资源,必须依赖有效的数据分析技术.传统的关系数据管理技术(并行数据库)经过了将近40年的发展,在扩展性方面遇到了巨大的障碍,无法胜任大数据分析的任务;而以MapReduce为代表的非关系数据管理和分析技术异军突起,以其良好的扩展性、容错性和大规模并行处理的优势,从互联网信息搜索领域开始,进而在数据分析的诸多领域和关系数据管理技术展开了竞争.关系数据管理技术阵营在丧失搜索这个阵地之后,开始考虑自身的局限性,不断借鉴MapReduce的优秀思想改造自身,而以MapReduce为代表的非关系数据管理技术阵营,从关系数据管理技术所积累的宝贵财富中挖掘可以借鉴的技术和方法,不断解决其性能问题.面向大数据的深度分析需求,新的架构模式正在涌现.关系数据管理技术和非关系数据管理技术在不断的竞争中互相取长补短,在新的大数据分析生态系统内找到自己的位置.  相似文献
4.
大数据的一个重要方面:数据可用性   总被引:4,自引:0,他引:4  
随着信息技术的发展,特别是物理信息系统、互联网、云计算和社交网络等技术的突飞猛进,大数据普遍存在,正在成为信息社会的重要财富,同时也带来了巨大的挑战.数据可用性问题就是大数据的重要挑战之一.随着数据的爆炸性增长,劣质数据也随之而来,数据可用性受到严重影响,对信息社会形成严重威胁,引起了学术界和工业界的共同关注.近年来,学术界和工业界开始研究数据可用性问题,取得了一些的研究成果,但是针对大数据可用性问题的研究工作还很少.介绍了大数据可用性的基本概念,讨论大数据可用性的挑战,探讨大数据可用性方面的研究问题,并综述数据可用性方面的研究成果.  相似文献
5.
针对高速数据流的大规模数据实时处理方法   总被引:3,自引:0,他引:3  
以实时传感数据和历史感知数据为基础的各类计算需求逐渐成为当前物联网应用建设中的关键,如何实现基于高速数据流和大规模历史数据的实时计算成为数据处理领域的新挑战.现有批处理方式的MapReduce大规模数据处理技术难以满足此类计算的实时要求.文中结合城市车辆数据的实时采集与处理应用,在理论和实践分析的基础上,提出了一种针对高速数据流的大规模数据实时处理方法,并对方法中的本地阶段化流水线、中间结果缓存等关键技术瓶颈进行了改进.其中,根据系统参数控制阶段化流水线,使CPU得到了充分、有效利用;通过改造内外存数据结构、读写策略和替换算法,优化了本地中间结果的高并发读写性能.实验表明,上述方法可以显著提升大规模历史数据上数据流处理的实时性和可伸缩性.  相似文献
6.
海量结构化数据存储检索系统   总被引:3,自引:0,他引:3  
Big Data是近年在云计算领域中出现的一种新型数据,传统关系型数据库系统在数据存储规模、检索效率等方面不再适用.目前的分布式No-SQL数据库可以提供分布式数据存储环境,但是无法支持多列查询.设计并实现分布式海量结构化数据存储检索系统(MDSS).系统采用列存储结构,采用集中分布式B+Tree索引和局部索引相结合的方法提高检索效率.在此基础上讨论复杂查询条件的任务分解机制,支持大数据的多属性检索、模糊检索以及统计分析等查询功能.实验结果表明,提出的分布式结构化数据管理技术和查询任务分解机制可以显著提高分布式条件下大数据集的查询效率,适合应用在日志类数据、流记录数据等海量结构化数据的存储应用场合.  相似文献
7.
云数据管理索引技术研究   总被引:3,自引:1,他引:2       下载免费PDF全文
马友忠  孟小峰 《软件学报》2015,26(1):145-166
数据的爆炸式增长给传统的关系型数据库带来了巨大的挑战,使其在扩展性、容错性等方面遇到了瓶颈.而云计算技术依靠其高扩展性、高可用性、容错性等特点,成为大规模数据管理的有效方案.然而现有的云数据管理系统也存在不足之处,其只能支持基于主键的快速查询,因缺乏索引、视图等机制,所以不能提供高效的多维查询、join等操作,这限制了云计算在很多方面的应用.主要对云数据管理中的索引技术的相关工作进行了深入调研,并作了对比分析,指出了其各自的优点和不足;对在云计算环境下针对海量物联网数据的多维索引技术研究工作进行了简单介绍;最后指出了在云计算环境下针对大数据索引技术的若干挑战性问题.  相似文献
8.
农业大数据综述   总被引:2,自引:0,他引:2  
云计算、物联网、大量社交网络的兴起使我们社会的数据种类和数量都呈井喷式增长,大数据时代已经到来。农业信息化是现代农业建设的重要内容,农业物联网等应用使农业产业发展中的应用日渐深入。在大数据背景下,大数据分析也为农业信息化提供了技术支持。对农业大数据的相关概念进行阐述,介绍了大数据的分析过程,以及对可应用于农业大数据的各项技术进行了介绍。最后简要分析了农业大数据未来发展所要面临的挑战。  相似文献
9.
数据管理系统评测基准:从传统数据库到新兴大数据   总被引:2,自引:0,他引:2  
大数据时代的到来意味着新技术、新系统和新产品的出现.如何客观地比较和评价不同系统之间的优劣自然成为一个热门研究课题,这种情形与三十多年前数据库系统蓬勃发展时期甚为相似.众所周知,在数据库系统取得辉煌成就的发展道路上,基准评测研究一直扮演着重要角色,极大推进了数据库技术和系统的长足发展.数据管理系统评测基准是指一套可用于评测、比较不同数据库系统性能的规范,以客观、全面反映具有类似功能的数据库系统之间的性能差距,从而推动技术进步、引导行业健康发展.数据管理系统评测基准与应用息息相关:应用发展产生新的数据管理需求,继而引发数据管理技术革新,再催生多个数据管理系统/平台,进而产生新的数据管理系统评测基准.数据管理系统评测基准种类多样,不仅包括面向关系型数据的基准评测,还包括面向半结构化数据、对象数据、流数据、空间数据等非关系型数据的评测基准.在当今新的数据系统发展中,面向大数据管理系统的评测基准的研究热潮也如期而至.大数据评测基准研究与应用密切相关.总体而言,尽管已有的数据管理系统评测基准未能充分体现大数据的特征,但是从方法学层面而言,三十多年来数据管理系统评测基准的发展经验是开展大数据系统研发最值得借鉴和参考的,这也是该文的主要动机.该文系统地回顾了数据管理系统评测基准的发展历程,分析了取得的成就,并展望了未来的发展方向.  相似文献
10.
支持大数据管理的NoSQL系统研究综述   总被引:2,自引:0,他引:2       下载免费PDF全文
申德荣  于戈  王习特  聂铁铮  寇月 《软件学报》2013,24(8):1786-1803
针对大数据管理的新需求,呈现出了许多面向特定应用的NoSQL数据库系统。针对基于key-value数据模型的 NoSQL 数据库的相关研究进行综述。首先,介绍了大数据的特点以及支持大数据管理系统面临的关键技术问题;然后,介绍了相关前沿研究和研究挑战,其中典型的包括系统体系结构、数据模型、访问方式、索引技术、事务特性、系统弹性、动态负载均衡、副本策略、数据一致性策略、基于flash的多级缓存机制、基于MapReduce的数据处理策略和新一代数据管理系统等;最后给出了研究展望。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号