首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   1篇
  自动化技术   3篇
  2009年   2篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
In Internet service fault management based on active probing, uncertainty and noises will affect service fault management. In order to reduce the impact, challenges of Internet service fault management are analyzed in this paper. Bipartite Bayesian network is chosen to model the dependency relationship between faults and probes, binary symmetric channel is chosen to model noises, and a service fault management approach using active probing is proposed for such an environment. This approach is composed of two phases: fault detection and fault diagnosis. In first phase, we propose a greedy approximation probe selection algorithm (GAPSA), which selects a minimal set of probes while remaining a high probability of fault detection. In second phase, we propose a fault diagnosis probe selection algorithm (FDPSA), which selects probes to obtain more system information based on the symptoms observed in previous phase. To deal with dynamic fault set caused by fault recovery mechanism, we propose a hypothesis inference algorithm based on fault persistent time statistic (FPTS). Simulation results prove the validity and efficiency of our approach.  相似文献
2.
In recent years, variational Bayesian learning has been used as an approximation of Bayesian learning. In spite of the computational tractability and good generalization in many applications, its statistical properties have yet to be clarified. In this paper, we focus on variational Bayesian learning of Bayesian networks which are widely used in information processing and uncertain artificial intelligence. We derive upper bounds for asymptotic variational free energy or stochastic complexities of bipartite Bayesian networks with discrete hidden variables. Our result theoretically supports the effectiveness of variational Bayesian learning as an approximation of Bayesian learning.  相似文献
3.
服务环境中的动态性会对故障诊断算法性能造成影响.为了降低这种影响,分析了服务环境中的动态性,提出多层管理模型建模服务系统:二分贝叶斯网络建立依赖模型和二元对称信道建模噪声.针对故障自动修复机制导致的动态故障集环境,在故障持续时间统计的基础上修正当前窗口内先验故障概率;针对动态模型环境,基于当前窗口内原始模型和观察症状时间建立期望模型.仿真结果显示,算法可以有效地诊断动态环境下的互联网服务故障.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号